Elasticsearch:使用 SIMD 指令加速向量搜索

2024-01-29 08:50

本文主要是介绍Elasticsearch:使用 SIMD 指令加速向量搜索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Chris Hegarty, Elastic Principal Engineer, Lucene PMC

翻译:杰瑞朱

多年来,Java 平台上运行的代码一直受益于自动向量化 —— HotSpot C2 编译器中的 superword 优化,将多个标量操作打包到 SIMD单指令多数据)向量指令中。这很好,但是这些类型的优化有些脆弱,具有天然的复杂性限制,并且受到 Java 平台规范的约束(例如,浮点运算的严格排序)。这并不是说这样的优化不再有价值,只是在某些情况下,明确代码的写法可以获得明显更好的性能。Lucene 中支持向量搜索的低级底层操作就是这样一种情况。

本文将介绍 Lucene 向量搜索中使用的底层操作,它们如何在运行时可靠地编译为 SIMD 指令(例如 x64 上的 AVX 指令和 AArch64 上的 NEON 指令),以及这对性能有何影响。

底层操作

Lucene 向量搜索实现的核心在于查找两个向量之间的相似性时使用的三个底层操作:点积、平方和余弦距离。这些操作都有浮点和二进制变体。为了简洁起见,我们只看这些基本操作之一 —— 点积。界面很简单,如下所示:

到目前为止,这些原始操作的背后是用标量(scalar)计算来实现的,并通过使用现有的技术(例如手动展开循环)来优化性能。如果你正在编写 Java 代码,这已经是最好的了 — 其余的我们留给 HotSpot 即时编译器来尽其所能进行优化(例如,自动向量化)。这是 dot 的简化标量实现产品,已删除展开(真正的实现可以在这里看到):

最近的变化是,JDK 现在提供了一个用于表达计算的 API,这些计算可以在运行时可靠地编译为 SIMD 指令。这是 OpenJDK 的项目 Panama 向量 API当然,运行时生成的实际指令取决于底层平台支持的内容(例如 AVX2 AVX 512),但 API 的结构是为了满足这一点。同样,这是点积代码的简化版本,但这次使用 Panama 向量 API

你可以看到代码有点冗长,但它是直观易懂的,并且很容易推理出它在运行时如何映射到硬件,因为你可以在代码中看到向量运算。VectorSpecies 包含元素类型(在我们的例子中为浮点数)和形状(向量的位大小)。优选的种类是平台的最大位大小之一。首先,有一个循环迭代输入,相乘并累加 SPECIES::length 一次元素。其次,汇总累加器向量。最后,一个标量循环处理任何剩余的尾部元素。

当我们在支持 AVX 512 CPU 上运行此代码时,我们看到 HotSpot C2 编译器发出 AVX 512 指令。高级向量扩展 (AVX) 已广泛使用,例如基于英特尔 Ice Lake 微架构的 CPU 和基于此类架构的云计算实例(例如 GCP 或 AWS)。AVX 512 指令一次跨过点积计算 16 个值;512 位大小 / 每个值 32 = 每次循环迭代 16 个值。当在支持 AVX2 CPU 上运行时,同一代码的一次循环迭代每次迭代都会跨过 8 个值。同样,NEON128 位)每次循环迭代将跨过 4 个值。

要看到这一点,我们需要查看生成的代码。开始有趣的探索吧!

看看原生代码

以下是 dotProduct  HotSpot C2 编译器在支持 AVX 512 Rocket Lake 上运行时的反汇编。

下面的代码片段包含主循环体,其中 rcx 和 rdx 寄存器保存指向第一个和第二个浮点数组的地址。

  • 首先,我们看到一条 vmovdqu32 指令,该指令将 512 位打包双字值从内存位置加载到 zmm0 寄存器中,即从偏移量到第一个 float[] 16 个值。
  • 其次,我们看到一条 vmulps 指令,它将先前加载到 zmm0 中的打包单精度浮点值与内存位置中相应的打包双字值相乘 - 这是第二个 float[] 中偏移量的 16 个值,并存储生成的浮点值zmm0中的点值。
  • 第三,我们看到 vaddps  zmm0 中的 16 个打包单精度浮点值与 zmm4 相加,并将打包单精度浮点结果存储在 zmm4 中 zmm4 是我们的循环累加器。
  • 最后,有一个小的计算来递增并检查循环计数器。

不要太担心反汇编的具体细节——提供它们是为了让人们更多地了解幕后发生的事情,但不需要非常充分的了解。事实上,上面的内容有些简化,因为实际发生的是 C2 展开循环,一次跨过 4 次迭代。

我们在每次迭代中使用更多的寄存器和指令。好的!更重要的是,我们的 Lucene 代码 手动也展开了循环,又是 4 倍(嗯...展开量很大)。

那么,这样能更快吗?

为了评估重写此类低级操作的影响,我们求助于 JMH,这是对此类 Java 代码执行微基准测试的普遍接受的方法。在这里,我们使用了 Robert Muir 非常好用且方便的一组基准测试使我们能够快速比较代码变体之前和之后。

请记住,SIMD 提供数据并行性,因此我们处理的数据越多,潜在的好处就越大。在我们的例子中,这与向量的维度大小直接相关——我们期望看到更大的维度大小带来的更大好处。让我们看看在支持 AVX 512 CPU 上运行时,具有 1024 维向量的点积的浮点变体;英特尔酷睿 i9-11900F @ 2.50GHz

该基准测试每微秒的操作次数,因此越大越好。在这里,我们看到新点积的执行速度比旧点积快大约八倍。我们看到不同的低级底层操作(无论是浮点数还是二进制)都有类似的性能提升:

我们看到所有原始操作变体以及各种从小到大的维度大小都有显着的改进(这里没有显示,但可以在 Lucene PR 中看到)。这一切都很棒,但这与更高级别的工作负载有何关系?

放到宏观看看

微基准测试对于了解低级基元操作的执行情况非常重要,但这对宏观层面有何影响?为此,我们可以查看 Elasticsearch的向量搜索基准,即 SO Vector 和 Dense Vector两个基准测试都显示出显着的改进,但让我们看看 SO Vector,因为它更有趣,因为它比 Dense Vector 具有更高的向量维度。

SO Vector 基准测试使用 200 万个 768 维向量和带过滤的 kNN 来测试向量搜索性能。这些向量基于从 StackOverflow 帖子转储中导出的数据集。Elasticsearch 使用单节点集群在 GCP 上运行,在具有 8 vCPU16GB RAM 和 1x300GiB SSD 磁盘的自定义 n2 实例上运行。该节点有一个固定到 Ice Lake CPU 平台。

基准测试中存在很多预先存在的差异,但总的来说,我们看到了积极的改进:

  • 索引吞吐量提高了约 30%

  • 合并时间减少了约 40%

  • 查询延迟显著改善。

但是 Panama 向量 API 不是真正孵化中吗?

JDK Vector API 正在 Panama 项目中开发,目前已经孵化了一段时间。孵化状态并不反映其质量,而更多的是依赖 OpenJDK 中其他令人兴奋的工作(即值类型)的结果。Lucene 正在 前沿” 开辟道路,并拥有一种利用 JDK 中非最终 API 的新颖方法 —— 通过构建包含 JDK 版本特定 API 的 apijar” —— 感谢 Uwe。这是一种务实的做法,我们不会掉以轻心。与生活中的大多数事情一样,这是一个权衡。只有当潜在收益超过维护成本时,我们才会考虑采用非最终 JDK APILucene 仍然具有这些低级底层操作的标量实现版本更快的 Panama 实现可在 JDK 20 和即将推出的 JDK 21 上使用,而我们会在某些不适用的情况下回退到旧版 JDK 的标量实现。同样,在平衡潜在收益与维护成本时,仅支持最新的 JDK 版本是一个务实的选择。

总结

现在,我们可以使用 Panama 向量 API 编写可靠地利用硬件加速 SIMD 指令的 Java 代码。在 Lucene 9.7.0 中,我们添加了更快地实现向量搜索所使用的底层操作的功能。Elasticsearch 8.9.0 默认情况下开箱即用地启用了这种更快的实现,因此你无需执行任何操作即可获得改进的性能优势。我们在向量搜索基准测试中看到了显着的性能改进,并期望这能够转化为用户工作负载。

SIMD 指令并不新鲜,并且已经存在很长时间了。与往常一样,你需要进行自己的性能基准测试,以了解这对你的环境产生的影响。AVX 512 很酷,但它可能会遭受可怕的 降频” 的困扰。总体而言,我们看到这一变化带来了全面的积极改进。

最后,我想感谢 Lucene PMC 成员 Robert Muir 和 Uwe Schindler,感谢他们愉快而富有成效的合作,促成了这一改进,没有他们,这一切就不会发生。  

这篇关于Elasticsearch:使用 SIMD 指令加速向量搜索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/656373

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

springboot整合 xxl-job及使用步骤

《springboot整合xxl-job及使用步骤》XXL-JOB是一个分布式任务调度平台,用于解决分布式系统中的任务调度和管理问题,文章详细介绍了XXL-JOB的架构,包括调度中心、执行器和Web... 目录一、xxl-job是什么二、使用步骤1. 下载并运行管理端代码2. 访问管理页面,确认是否启动成功

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

使用Python绘制可爱的招财猫

《使用Python绘制可爱的招财猫》招财猫,也被称为“幸运猫”,是一种象征财富和好运的吉祥物,经常出现在亚洲文化的商店、餐厅和家庭中,今天,我将带你用Python和matplotlib库从零开始绘制一... 目录1. 为什么选择用 python 绘制?2. 绘图的基本概念3. 实现代码解析3.1 设置绘图画