《动手学深度学习(PyTorch版)》笔记4.7

2024-01-28 18:36

本文主要是介绍《动手学深度学习(PyTorch版)》笔记4.7,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chapter4 Multilayer Perceptron

4.7 Forward/Backward Propagation and Computational Graphs

本节将通过一些基本的数学和计算图,深入探讨反向传播的细节。首先,我们将重点放在带权重衰减( L 2 L_2 L2正则化)的单隐藏层多层感知机上。

4.7.1 Forward Propagation

前向传播(forward propagation或forward pass)指的是按顺序(从输入层到输出层)计算和存储神经网络中每层的结果。

我们将一步步研究单隐藏层神经网络的机制,为了简单起见,我们假设输入样本是 x ∈ R d \mathbf{x}\in \mathbb{R}^d xRd,并且我们的隐藏层不包括偏置项。这里的中间变量是:

z = W ( 1 ) x , \mathbf{z}= \mathbf{W}^{(1)} \mathbf{x}, z=W(1)x,

其中 W ( 1 ) ∈ R h × d \mathbf{W}^{(1)} \in \mathbb{R}^{h \times d} W(1)Rh×d是隐藏层的权重参数。将中间变量 z ∈ R h \mathbf{z}\in \mathbb{R}^h zRh通过激活函数 ϕ \phi ϕ后,我们得到长度为 h h h的隐藏激活向量:

h = ϕ ( z ) . \mathbf{h}= \phi (\mathbf{z}). h=ϕ(z).

隐藏变量 h \mathbf{h} h也是一个中间变量。假设输出层的参数只有权重 W ( 2 ) ∈ R q × h \mathbf{W}^{(2)} \in \mathbb{R}^{q \times h} W(2)Rq×h,我们可以得到输出层变量,它是一个长度为 q q q的向量:

o = W ( 2 ) h . \mathbf{o}= \mathbf{W}^{(2)} \mathbf{h}. o=W(2)h.

假设损失函数为 l l l,样本标签为 y y y,我们可以计算单个数据样本的损失项,

L = l ( o , y ) . L = l(\mathbf{o}, y). L=l(o,y).

根据 L 2 L_2 L2正则化的定义,给定超参数 λ \lambda λ,正则化项为

s = λ 2 ( ∥ W ( 1 ) ∥ F 2 + ∥ W ( 2 ) ∥ F 2 ) , s = \frac{\lambda}{2} \left(\|\mathbf{W}^{(1)}\|_F^2 + \|\mathbf{W}^{(2)}\|_F^2\right), s=2λ(W(1)F2+W(2)F2),

∥ X ∥ F \|\mathbf{X}\|_F XF表示矩阵的Frobenius范数:
∥ X ∥ F = ∑ i = 1 m ∑ j = 1 n x i j 2 . \|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}. XF=i=1mj=1nxij2 .
最后,模型在给定数据样本上的正则化损失为:

J = L + s . J = L + s. J=L+s.

在下面的讨论中,我们将 J J J称为目标函数(objective function)。

下图是与上述简单网络相对应的计算图,其中正方形表示变量,圆圈表示操作符。

在这里插入图片描述

4.7.2 Backward Propagation

反向传播(backward propagation或backpropagation)指的是计算神经网络参数梯度的方法,该方法根据链式规则,按相反的顺序从输出层到输入层遍历网络。该算法存储了计算某些参数梯度时所需的任何中间变量(偏导数)。
假设我们有函数 Y = f ( X ) \mathsf{Y}=f(\mathsf{X}) Y=f(X) Z = g ( Y ) \mathsf{Z}=g(\mathsf{Y}) Z=g(Y),其中输入和输出 X , Y , Z \mathsf{X}, \mathsf{Y}, \mathsf{Z} X,Y,Z是任意形状的张量。利用链式法则,我们可以计算 Z \mathsf{Z} Z关于 X \mathsf{X} X的导数:

∂ Z ∂ X = prod ( ∂ Z ∂ Y , ∂ Y ∂ X ) . \frac{\partial \mathsf{Z}}{\partial \mathsf{X}} = \text{prod}\left(\frac{\partial \mathsf{Z}}{\partial \mathsf{Y}}, \frac{\partial \mathsf{Y}}{\partial \mathsf{X}}\right). XZ=prod(YZ,XY).

在这里,我们使用 prod \text{prod} prod运算符在执行必要的操(如换位和交换输入位置)后将其参数相乘。对于高维张量,我们使用适当的对应项。

在上面的计算图中单隐藏层简单网络的参数是 W ( 1 ) \mathbf{W}^{(1)} W(1) W ( 2 ) \mathbf{W}^{(2)} W(2),反向传播的目的是计算梯度 ∂ J / ∂ W ( 1 ) \partial J/\partial \mathbf{W}^{(1)} J/W(1) ∂ J / ∂ W ( 2 ) \partial J/\partial \mathbf{W}^{(2)} J/W(2),计算的顺序与前向传播中执行的顺序相反,具体如下:

∂ J ∂ L = 1 and ∂ J ∂ s = 1. \frac{\partial J}{\partial L} = 1 \; \text{and} \; \frac{\partial J}{\partial s} = 1. LJ=1andsJ=1.

∂ J ∂ o = prod ( ∂ J ∂ L , ∂ L ∂ o ) = ∂ L ∂ o ∈ R q . \frac{\partial J}{\partial \mathbf{o}} = \text{prod}\left(\frac{\partial J}{\partial L}, \frac{\partial L}{\partial \mathbf{o}}\right) = \frac{\partial L}{\partial \mathbf{o}} \in \mathbb{R}^q. oJ=prod(LJ,oL)=oLRq.

∂ s ∂ W ( 1 ) = λ W ( 1 ) , ∂ s ∂ W ( 2 ) = λ W ( 2 ) . \frac{\partial s}{\partial \mathbf{W}^{(1)}} = \lambda \mathbf{W}^{(1)} \; \text{,} \; \frac{\partial s}{\partial \mathbf{W}^{(2)}} = \lambda \mathbf{W}^{(2)}. W(1)s=λW(1),W(2)s=λW(2).

∂ J ∂ W ( 2 ) = prod ( ∂ J ∂ o , ∂ o ∂ W ( 2 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 2 ) ) = ∂ J ∂ o h ⊤ + λ W ( 2 ) ∈ R q × h . \frac{\partial J}{\partial \mathbf{W}^{(2)}}= \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{W}^{(2)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(2)}}\right)= \frac{\partial J}{\partial \mathbf{o}} \mathbf{h}^\top + \lambda \mathbf{W}^{(2)}\in \mathbb{R}^{q \times h}. W(2)J=prod(oJ,W(2)o)+prod(sJ,W(2)s)=oJh+λW(2)Rq×h.

∂ J ∂ h = prod ( ∂ J ∂ o , ∂ o ∂ h ) = W ( 2 ) ⊤ ∂ J ∂ o ∈ R h . \frac{\partial J}{\partial \mathbf{h}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{o}}, \frac{\partial \mathbf{o}}{\partial \mathbf{h}}\right) = {\mathbf{W}^{(2)}}^\top \frac{\partial J}{\partial \mathbf{o}}\in \mathbb{R}^h. hJ=prod(oJ,ho)=W(2)oJRh.

由于激活函数 ϕ \phi ϕ是按元素计算的,计算中间变量 z \mathbf{z} z的梯度需要使用按元素乘法运算符,我们用 ⊙ \odot 表示:

∂ J ∂ z = prod ( ∂ J ∂ h , ∂ h ∂ z ) = ∂ J ∂ h ⊙ ϕ ′ ( z ) ∈ R h . \frac{\partial J}{\partial \mathbf{z}} = \text{prod}\left(\frac{\partial J}{\partial \mathbf{h}}, \frac{\partial \mathbf{h}}{\partial \mathbf{z}}\right) = \frac{\partial J}{\partial \mathbf{h}} \odot \phi'\left(\mathbf{z}\right)\in \mathbb{R}^h. zJ=prod(hJ,zh)=hJϕ(z)Rh.

∂ J ∂ W ( 1 ) = prod ( ∂ J ∂ z , ∂ z ∂ W ( 1 ) ) + prod ( ∂ J ∂ s , ∂ s ∂ W ( 1 ) ) = ∂ J ∂ z x ⊤ + λ W ( 1 ) = ∂ J ∂ h ⊙ ϕ ′ ( z ) x ⊤ + λ W ( 1 ) = ( W ( 2 ) ⊤ ∂ J ∂ o ) ⊙ ϕ ′ ( z ) x ⊤ + λ W ( 1 ) . \begin{align*} \frac{\partial J}{\partial \mathbf{W}^{(1)}} &= \text{prod}\left(\frac{\partial J}{\partial \mathbf{z}}, \frac{\partial \mathbf{z}}{\partial \mathbf{W}^{(1)}}\right) + \text{prod}\left(\frac{\partial J}{\partial s}, \frac{\partial s}{\partial \mathbf{W}^{(1)}}\right) \\ &= \frac{\partial J}{\partial \mathbf{z}} \mathbf{x}^\top + \lambda \mathbf{W}^{(1)} \\ &= \frac{\partial J}{\partial \mathbf{h}} \odot \phi'\left(\mathbf{z}\right)\mathbf{x}^\top + \lambda \mathbf{W}^{(1)} \\ &= ({\mathbf{W}^{(2)}}^\top \frac{\partial J}{\partial \mathbf{o}})\odot \phi'\left(\mathbf{z}\right)\mathbf{x}^\top + \lambda \mathbf{W}^{(1)}. \end{align*} W(1)J=prod(zJ,W(1)z)+prod(sJ,W(1)s)=zJx+λW(1)=hJϕ(z)x+λW(1)=(W(2)oJ)ϕ(z)x+λW(1).

4.7.3 Training Neural Networks

在训练神经网络时,前向传播和反向传播相互依赖。以上述简单网络为例:一方面,在前向传播期间计算正则项取决于模型参数 W ( 1 ) \mathbf{W}^{(1)} W(1) W ( 2 ) \mathbf{W}^{(2)} W(2)的当前值。它们是由优化算法根据最近迭代的反向传播给出的。另一方面,反向传播期间参数的梯度计算,取决于由前向传播给出的隐藏变量 h \mathbf{h} h的当前值。

因此,在训练神经网络时,我们交替使用前向传播和反向传播,利用反向传播给出的梯度来更新模型参数。注意,反向传播重复利用前向传播中存储的中间值,以避免重复计算。这带来的影响之一是我们需要保留中间值,直到反向传播完成,这也是训练比单纯的预测需要更多的内存(显存)的原因之一。

这篇关于《动手学深度学习(PyTorch版)》笔记4.7的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654448

相关文章

51单片机学习记录———定时器

文章目录 前言一、定时器介绍二、STC89C52定时器资源三、定时器框图四、定时器模式五、定时器相关寄存器六、定时器练习 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出~ 提示:以下是本篇文章正文内容,下面案例可供参考 一、定时器介绍 定时器介绍:51单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 定时器作用: 1.用于计数系统,可

问题:第一次世界大战的起止时间是 #其他#学习方法#微信

问题:第一次世界大战的起止时间是 A.1913 ~1918 年 B.1913 ~1918 年 C.1914 ~1918 年 D.1914 ~1919 年 参考答案如图所示

[word] word设置上标快捷键 #学习方法#其他#媒体

word设置上标快捷键 办公中,少不了使用word,这个是大家必备的软件,今天给大家分享word设置上标快捷键,希望在办公中能帮到您! 1、添加上标 在录入一些公式,或者是化学产品时,需要添加上标内容,按下快捷键Ctrl+shift++就能将需要的内容设置为上标符号。 word设置上标快捷键的方法就是以上内容了,需要的小伙伴都可以试一试呢!

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

AssetBundle学习笔记

AssetBundle是unity自定义的资源格式,通过调用引擎的资源打包接口对资源进行打包成.assetbundle格式的资源包。本文介绍了AssetBundle的生成,使用,加载,卸载以及Unity资源更新的一个基本步骤。 目录 1.定义: 2.AssetBundle的生成: 1)设置AssetBundle包的属性——通过编辑器界面 补充:分组策略 2)调用引擎接口API

Javascript高级程序设计(第四版)--学习记录之变量、内存

原始值与引用值 原始值:简单的数据即基础数据类型,按值访问。 引用值:由多个值构成的对象即复杂数据类型,按引用访问。 动态属性 对于引用值而言,可以随时添加、修改和删除其属性和方法。 let person = new Object();person.name = 'Jason';person.age = 42;console.log(person.name,person.age);//'J

大学湖北中医药大学法医学试题及答案,分享几个实用搜题和学习工具 #微信#学习方法#职场发展

今天分享拥有拍照搜题、文字搜题、语音搜题、多重搜题等搜题模式,可以快速查找问题解析,加深对题目答案的理解。 1.快练题 这是一个网站 找题的网站海量题库,在线搜题,快速刷题~为您提供百万优质题库,直接搜索题库名称,支持多种刷题模式:顺序练习、语音听题、本地搜题、顺序阅读、模拟考试、组卷考试、赶快下载吧! 2.彩虹搜题 这是个老公众号了 支持手写输入,截图搜题,详细步骤,解题必备

《offer来了》第二章学习笔记

1.集合 Java四种集合:List、Queue、Set和Map 1.1.List:可重复 有序的Collection ArrayList: 基于数组实现,增删慢,查询快,线程不安全 Vector: 基于数组实现,增删慢,查询快,线程安全 LinkedList: 基于双向链实现,增删快,查询慢,线程不安全 1.2.Queue:队列 ArrayBlockingQueue:

据阿谱尔APO Research调研显示,2023年全球髓内钉市场销售额约为4.7亿美元

根据阿谱尔 (APO Research)的统计及预测,2023年全球髓内钉市场销售额约为4.7亿美元,预计在2024-2030年预测期内将以超过3.82%的CAGR(年复合增长率)增长。 髓内钉市场是指涉及髓内钉制造、分销和销售的行业。髓内钉是一种用于整形外科手术的医疗器械,用于稳定长骨骨折,特别是股骨、胫骨和肱骨。髓内钉通常由不銹钢或钛等材料制成,并插入骨的髓管中,以在愈合过程中提供结构支

硬件基础知识——自学习梳理

计算机存储分为闪存和永久性存储。 硬盘(永久存储)主要分为机械磁盘和固态硬盘。 机械磁盘主要靠磁颗粒的正负极方向来存储0或1,且机械磁盘没有使用寿命。 固态硬盘就有使用寿命了,大概支持30w次的读写操作。 闪存使用的是电容进行存储,断电数据就没了。 器件之间传输bit数据在总线上是一个一个传输的,因为通过电压传输(电流不稳定),但是电压属于电势能,所以可以叠加互相干扰,这也就是硬盘,U盘