步进电机and伺服电机

2024-01-28 09:12
文章标签 电机 步进 伺服电机

本文主要是介绍步进电机and伺服电机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、步进电机
  • 二、常见的控制算法
  • 三、伺服电机
  • 总结


一、步进电机

步进电机的基本工作原理如下: 通过给定子的一个或多个相通电,线圈中流动的电流产生磁场,转子与该磁场对齐实现电能到动能的转化 。 通过依次提供不同的相位,转子可以旋转特定的量以到达所需的最终位置 。
在实际使用步进电机驱动器驱动中,我们常用 细分分数 来控制微步驱动的大小。步进电机的细分技术实质上是 一种电子阻尼技术 ,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。细分是步进电机驱动器将上级装置发出的每个脉冲按步进电机驱动器设定的细分系数分成系数个脉冲输出 。 细分后电机运行时的实际步距角是基本步距角的几分之一。
步进电机输出的角位移与输入的脉冲数成正比,转速与脉冲频率成正比,改变绕组通电的顺序,电机就会反转。因此:

  1. 可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;
  2. 可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的;
  3. 可以通过控制绕组通电顺序,达到控制电机正反转的目的。

步进电机可以作为一种控制用的特种电机,利用其没有积累误差 的特点,广泛应用于各种开环控制。

二、常见的控制算法

T梯形加减速算法:梯形算法的速度轮廓是梯形,故而得名,对梯形求导数可以得到矩形,因此本算法直接从勾勒加速度曲线入手,进行数值积分得出速度轮廓,进而转换为对应的定时器预设值,从而控制电机的速度变化,达到想要的效果。

S形加减速算法:加减速的变化过程中速度曲线呈现一个英文字母“S”形的,我们称之为S形加减速算法。S形加减速在启动停止以及高速运动时的速度变化的比较慢,导致冲击力噪音就很小,所以更适用于精密的工件搬运与建造。而梯形加减速更适合一些定长送料的场合。S形加减速分七段式和五段式算法,7段式具有平稳、精度高的特点,但该算法的参数复杂,大大降低到了工作效率且对硬件的要求较高;5段式算法简单、具有实时性和高精度的加减速控制算法,非常适合资源紧凑的小型嵌入式系统。

SPTA算法:SPTA算法根据用户输入的加速度和速度以及总脉冲数,自动计算加减速过程所需的定时器装载值,也不需要额外的RAM来存储表格,算法效率高、灵活方便,特别适合移植到一些资源紧俏的单片机,比如51单片机等。通过定时器定时中断来产生一个时间片,在定时器中断服务子程序中完成上述算法 ,在需要时,通过控制 GPIO 产生一个步进脉冲 。

三、伺服电机

伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位。
伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。交流伺服电机和无刷直流伺服电机在功能上的区别:交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。
伺服电机则是闭环控制,即通过传感器实时反馈电机的运行状态,由控制芯片进行实时调节。一般工业用的伺服电机都是三环控制,即电流环、速度环、位置环,分别能反馈电机运行的角加速度、角速度和旋转位置。
芯片通过三者的反馈控制电机各相的驱动电流,实现电机的速度和位置都准确按照预定运行。伺服电机能保证只要负载在额定范围内,就能达到很高的精度,具体精度首先受制于编码器的码盘,与控制算法也有很大关系。与步进电机原理结构不同的是,伺服电机由于把控制电路放到了电机之外,里面的电机部分就是标准的直流电机或交流感应电机。一般情况下电机的原始扭矩是不够用的,往往需要配合减速机进行工作,可以使用减速齿轮组或行星减速器。


总结

步进电机:步进电机是一种将电脉冲信号转换成相应角位移或线位移的电动机。
伺服电机:是指伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。
步进与伺服都是嵌入式控制系统中常用的电机种类,需要根据需求与成本进行选用。

这篇关于步进电机and伺服电机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/653166

相关文章

【电机控制】数字滤波算法(持续更新)

文章目录 前言1. 数字低通滤波 前言 各种数字滤波原理,离散化公式及代码。 1. 数字低通滤波 滤波器公式 一阶低通滤波器的输出 y [ n ] y[n] y[n] 可以通过以下公式计算得到: y [ n ] = α x [ n ] + ( 1 − α ) y [ n − 1 ] y[n] = \alpha x[n] + (1 - \alpha) y[n-1]

基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述        基于PI控制算法的异步感应电机转速控制系统simulink建模与仿真。PI控制器是一种经典的线性控制器,它通过将控制量的比例部分和积分部分相结合来实现对系统输出的调节。比例部分用于快速响应偏差,而积分部分则用于消除稳态误差。 2.系统仿真结果 (完整程

【科普知识】一体化电机掉电后“位置精准复位“机制与规律

在工业自动化、机器人技术及精密控制领域,电机作为核心执行元件,其稳定运行和精确控制对于整个系统的性能至关重要。 然而,电机在运行过程中可能会遭遇突然断电的情况,这会导致电机失去驱动力并停止在当前位置,甚至在某些情况下发生位置偏移。 因此,电机掉电后的位置恢复机制成为了一个关键技术问题。本文将探讨电机掉电后位置恢复的原理机制,以期为相关领域的研究与应用提供参考。 一、电机掉电后的位置偏移现象

工业三相电机的反转

反转旋转:简单方法 对于只需要单向运转的电机,直接的解决方案是反转来自电源的两根物理输入线。实际上,这正是逆变器和反向启动器内部发生的事情,但它都隐藏在“引擎盖下”。 但这究竟是如何实现的呢?为什么反转几根电线会对大型电机产生如此大的影响呢? 请务必参考电机制造商的说明,确保正确反转。并非所有电机都有相同的要求,但大多数三相电机都遵循相同的原理运行。 三相电机基础知识 在本文中,我们将仅

开绕组永磁电机驱动系统零序电流抑制策略研究(7)——基于零矢量重新分布的120°矢量解耦/中间六边形调制零序电流抑制策略

1.前言 很久没有更新过开绕组电机的仿真了。在一年前发了开绕组的各种调制策略。开绕组电机最常见的两种解耦调制就是120°矢量解耦/中间六边形调制和180°矢量解耦/最大六边形调制。 我当时想的是,180°解耦调制/最大六边形调制的电压利用率最高,所以我就一直用这个调制方式。但是近年来做开绕组电机的基本都是华科的老师,而他们都采用了120°调制/中间六边形调制。 我之前是做了120°解耦调

LabVIEW电机多次调用

在LabVIEW中,为实现对多个电机的独立控制,工程师可以采用可重入VI、动态VI调用、多任务结构或面向对象编程等方法。每种方法都有其优点和适用场景,选择合适的方法能有效提升系统的性能和可维护性。 在LabVIEW中,如果需要多次调用控制电机的VI,并且需要针对每个电机进行单独控制,可以采用以下几种方法: 1. 创建可重入的(Reentrant)VI 方法:将电机控制的VI设置为可

【电机控制】有感FOC之霍尔自学习

文章目录 前言1 霍尔自学习的目的2 霍尔自学习的流程3 定位角度时的设置 前言 PMSM(永磁同步电机)的FOC控制算法中,无论是有感还是无感,对于位置(电角度)的确定都是其中重要而不可或缺的一环。本文介绍有感FOC的前期准备工作,对霍尔自学习的过程和作用进行简要说明。 1 霍尔自学习的目的 霍尔自学习有两个主要目的: 第一,获取霍尔状态的顺序,并与转动方向对应。 第二

聊聊2相步进电机的细分算法与细分步进角

2 相步进电机是一种常见的电机类型,广泛应用于各种自动化设备中。细分算法是提高步进电机精度和运行平稳性的重要手段。 一、细分算法的原理 细分算法的基本思想是将一个整步分成若干个微步,通过控制电机绕组中的电流大小和方向,使电机的转子在每个微步中转动一个微小的角度。这样可以大大提高电机的分辨率和精度,同时也可以降低电机的振动和噪声。 细分算法通常采用正弦波电流控制方式,即通过控制电机绕组中的电流

凌鸥学园电机控制学习盛宴,诚邀您的加入

🎓 免费学习,荣誉加冕 凌鸥学园提供免费的电机控制课程,从基础到专业,全程无负担。 📚全面课程体系,灵活学习模式 凌鸥学园提供从基础到专业的全面课程体系,每个等级的课程都经过精心设计,确保学员能够循序渐进地掌握电机控制知识。学员可以根据自己的时间和进度自由安排学习,线上课程平台使学习更加便捷和高效。 🏆考试通过,奖励丰厚 - L1-L3:基础扎实,奖励凌鸥价

【电机控制】FOC学习路径(随笔)

文章目录 前言1. 知识准备2. 应用场景3.入门学习 前言 回首学习之路,总结进阶之梯,希望能给后来者一点指引。 1. 知识准备 电机控制是电磁机械耦合的复杂非线性系统,在踏上进阶之路之前,我们需要先掌握必要的概念和术语。 主要分为以下几个方面: 1)电机基础知识,BLDC,PMSM,磁链,反电动势,霍尔等。 2)变频器,逆变器,开关电源,散热,效率。 3)基本硬