GPT-SoVits:刚上线就获得了5.1k star的开源声音克隆项目!效果炸裂的跨语言音色克隆模型!

本文主要是介绍GPT-SoVits:刚上线就获得了5.1k star的开源声音克隆项目!效果炸裂的跨语言音色克隆模型!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上周,RVC变声器创始人 (GitHub昵称:RVC-Boss) 开源了一款跨语言音色克隆项目 GPT-SoVITS。项目一上线就引来了互联网大佬和博主的好评推荐,不到两天时间就已经在GitHub上获得了1.4k Star量,不过现在已经飙升到了5.1k

据说,该项目是RVC-BossRcell (AI音色转换技术Sovits开发者)共同研究,历时半年,期间遇到了很多难题而开发出来的一款全新的低成本的易用的音色克隆工具。

接下来小编带大家一起看看这款新型的音色克隆工具RVC-Boss有何特别之处!

项目介绍

GPT-SoVITS 是一款强大的支持少量语音转换、文本到语音的音色克隆模型。支持中文、英文、日文的语音推理。

据开发者及各大博主测验,仅需提供 5 秒语音样本即可体验达到 80%~95% 像的声音克隆。若提供 1 分钟语音样本可以逼近真人的效果,且训练出高质量的 TTS 模型!

项目地址:https://github.com/RVC-Boss/GPT-SoVITS

目前已获得 5.1k Star,看到很多人对其评价为目前最强中文语音克隆工具。

特征:
  • 零样本 TTS:输入 5 秒语音样本并体验即时文本到语音转换。

  • Few-shot TTS:仅用 1 分钟的训练数据即可微调模型,以提高语音相似度和真实感。

  • 跨语言支持:用与训练数据集不同的语言进行推理,目前支持英语、日语和中文。

  • WebUI工具:集成工具包括语音伴奏分离、自动训练集分割、中文ASR和文本标注,帮助初学者创建训练数据集和GPT/SoVITS模型。

使用方式

如果是 Windows 可直接开箱使用。

只需下载项目中的 prezip,解压并双击 go-webui.bat文件 即可启动 GPT-SoVITS-WebUI,然后通过界面方式操作即可。

项目环境依赖:

GPT-SoVITS 依赖于开源音视频全能转码工具 FFmpeg。这个需要我们根据不同的系统进行手动安装。

conda 环境安装:

conda install ffmpeg

Ubuntu/Debian 用户:

sudo apt install ffmpeg   
sudo apt install libsox-dev   
conda install -c conda-forge 'ffmpeg<7'

Mac 操作系统用户:

brew install ffmpeg

Windows操作系统用户:

需手动下载ffmpeg.exe和ffprobe.exe并将其放置在 GPT-SoVITS 根目录下。

ffmpeg.exe下载地址:https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe

ffprobe.exe下载地址:https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe

预训练模型下载放置位置:

具体使用步骤:

1、打开项目根目录,将预置克隆音频放置根目录,然后双击go-webui.bat 运行项目。(可以发现它实际上执行了Python脚本webui.py)

2、语音切割演示,将音频文件路径填入“音频自动切分输入路径”下,点击“开启语音切割”

最终的切分结果会存放在项目Output下的slicer_opt目录下(切分成了20份)

3、开始转写,将切分路径填入“中文批量离线ASR工具”输入路径下,转写结果文件会在Output下的asr_opt目录下生成

4、切换到GPT-SoVITS-TTS标签,填写模型名称(角色名),再分别填入之前生成的切分目录和转写目录路径,开启文本获取-开启SSL提取-语义Token提取(这3个步骤,一步一步来,一个完成之后再点击下一个),最后开启一键三连

然后转到“微调训练”,设置适合自己显卡的显存,“开启SoVits训练”,然后SoVits训练结束后,再“开启GPT训练”

5、选择“推理”标签栏,设置GPT和SoVits的模型,勾选“是否开启TTS推理WebUI”,等一会回自动跳转到一个新的“推理界面”

5、填写参考音频信息(音频文件、音频文本、语种)、合成音频信息(音频文本,语音),点击合成语音,最后就完成了语音转换。

总结

GPT-SoVITS 支持跨语言,集成了声音伴奏分离、自动训练集分割、中文ASR和文本标注等辅助工具。

仅需1分钟的训练数据,即可微调模型,提高语音相似性和真实感。

整体的体验还想相当不错的,希望未来应用的领域会越来越多,更新迭代会越来越完善。

这篇关于GPT-SoVits:刚上线就获得了5.1k star的开源声音克隆项目!效果炸裂的跨语言音色克隆模型!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/651800

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型