【深度优先搜索】【C++算法】834 树中距离之和

2024-01-26 10:52

本文主要是介绍【深度优先搜索】【C++算法】834 树中距离之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【map】【C++算法】1289. 下降路径最小和 II

本文涉及知识点

深度优先搜索 树 图论

LeetCode834 树中距离之和

给定一个无向、连通的树。树中有 n 个标记为 0…n-1 的节点以及 n-1 条边 。
给定整数 n 和数组 edges , edges[i] = [ai, bi]表示树中的节点 ai 和 bi 之间有一条边。
返回长度为 n 的数组 answer ,其中 answer[i] 是树中第 i 个节点与所有其他节点之间的距离之和。
示例 1:
输入: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
输出: [8,12,6,10,10,10]
解释: 树如图所示。
我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
示例 2:
输入: n = 1, edges = []
输出: [0]
示例 3:
输入: n = 2, edges = [[1,0]]
输出: [1,1]
参数:
1 <= n <= 3 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
给定的输入保证为有效的树

深度优先搜索

假定节点0是树的根。
一,通过深度优先搜索计算m_vSubNodeCounts[i] ,以i为根节点的子树的节点数量。
二,通过深度优先搜索计算0到所有节点的距离。
DFSDis返回值是: cur到所有子孙节点的距离。
三,深度优先搜索,通过父节点到各点距离,计算当前节点到各点距离。
当前节点 和 当前节点的子孙节点 到 当前节点 的距离比到当前节点的父节点少1。
其它节点 到当前节点的距离比到当前节点的父节点的距离多1。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:vector<int> sumOfDistancesInTree(int n, vector<vector<int>>& edges) {m_vSubNodeCounts.resize(n);m_vRet.resize(n);CNeiBo2 neiBo(n, edges, false);DFSSubNodeCount(neiBo, 0, -1);m_vRet[0] = DFSDis(neiBo, 0, -1);DFS(neiBo, 0, -1);return m_vRet;}void DFS(const CNeiBo2& neiBo, int cur, int parent){if (-1 != parent){m_vRet[cur] = m_vRet[parent] - m_vSubNodeCounts[cur] + (m_vSubNodeCounts.size() - m_vSubNodeCounts[cur]);}for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}DFS(neiBo, next, cur);}}int DFSSubNodeCount(const CNeiBo2& neiBo,int cur,int parent){int iRet = 1;for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}iRet += DFSSubNodeCount(neiBo, next, cur);}return m_vSubNodeCounts[cur] = iRet;}int DFSDis(const CNeiBo2& neiBo, int cur, int parent)	{int iDis = m_vSubNodeCounts[cur]-1;for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}iDis += DFSDis(neiBo, next, cur);}return iDis;}vector<int> m_vSubNodeCounts,m_vRet;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n;vector<vector<int>> edges;{Solution sln;n = 6, edges = { {0,1},{0,2},{2,3},{2,4},{2,5} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{8, 12, 6, 10, 10, 10}, res);}{Solution sln;n = 1, edges = {};auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{0}, res);}{Solution sln;n = 2, edges = { {1,0} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{1,1}, res);}{Solution sln;n = 3, edges = { {2,1},{0,2} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{3,3,2}, res);}
}

2023年1月

class Solution {
public:
vector sumOfDistancesInTree(int n, vector<vector>& edges) {
m_n = n;
m_vChildDis.assign(n, -1);
m_vChildNum.resize(n, -1);
m_vNP.resize(n);
m_vTotalNum.resize(n);
for (auto& e : edges)
{
m_vNP[e[0]].push_back(e[1]);
m_vNP[e[1]].push_back(e[0]);
}
dfs1(0, -1);
dfs2(0, -1);
return m_vTotalNum;
}
void dfs1(int iCur, const int iParent)
{
int iDis = 0;
int iNum = 0;
for (const auto& next : m_vNP[iCur])
{
if (iParent == next)
{
continue;
}
dfs1(next, iCur);
iDis += m_vChildDis[next];
iNum += m_vChildNum[next];
}
m_vChildDis[iCur] = iDis + iNum;
m_vChildNum[iCur] = iNum+1;
}
void dfs2(int iCur, const int iParent)
{
if (-1 == iParent)
{
m_vTotalNum[iCur] = m_vChildDis[iCur];
}
else
{
m_vTotalNum[iCur] = m_vTotalNum[iParent] - m_vChildDis[iCur] - m_vChildNum[iCur] + (m_n - m_vChildNum[iCur]) + m_vChildDis[iCur];
}
for (const auto& next : m_vNP[iCur])
{
if (iParent == next)
{
continue;
}
dfs2(next, iCur);
}
}
vector m_vChildDis;//距离子孙节点之和
vector m_vChildNum;//子孙数量之和+1
vector m_vTotalNum;
int m_n;
vector < vector > m_vNP;
};

2023年 6月

class Solution {
public:
vector sumOfDistancesInTree(int n, vector<vector>& edges) {
m_vTotalDis.resize(n);
m_vNodeNum.resize(n);
m_vLeve.resize(n);
m_vParent.assign(n, -1);
CNeiBo2 neiBo(n, edges, false);
DSFLeveAndNodeCount(neiBo.m_vNeiB, 0, -1);
m_vTotalDis[0] = std::accumulate(m_vLeve.begin(), m_vLeve.end(), 0);
//必须按父子顺序出来
DFS(neiBo.m_vNeiB, 0, -1);
return m_vTotalDis;
}
void DFS(vector<vector>& neiBo, int iCur, int iParent)
{
if (-1 != iParent)
{
m_vTotalDis[iCur] = m_vTotalDis[m_vParent[iCur]] - m_vNodeNum[iCur] + (m_vNodeNum[0] - m_vNodeNum[iCur]);
}
for (const auto& next : neiBo[iCur])
{
if (next == iParent)
{
continue;
}
DFS(neiBo, next, iCur);
}
}
void DSFLeveAndNodeCount( vector<vector>& neiBo,int iCur,int iParent)
{
if (-1 != iParent)
{
m_vLeve[iCur] = m_vLeve[iParent] + 1;
m_vParent[iCur] = iParent;
}
m_vNodeNum[iCur] = 1;
for (const auto& next : neiBo[iCur])
{
if (next == iParent)
{
continue;
}
DSFLeveAndNodeCount(neiBo,next, iCur);
m_vNodeNum[iCur] += m_vNodeNum[next];
}
}
vector m_vTotalDis,m_vNodeNum,m_vLeve,m_vParent;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【C++算法】834 树中距离之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646565

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?