【深度优先搜索】【C++算法】834 树中距离之和

2024-01-26 10:52

本文主要是介绍【深度优先搜索】【C++算法】834 树中距离之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【map】【C++算法】1289. 下降路径最小和 II

本文涉及知识点

深度优先搜索 树 图论

LeetCode834 树中距离之和

给定一个无向、连通的树。树中有 n 个标记为 0…n-1 的节点以及 n-1 条边 。
给定整数 n 和数组 edges , edges[i] = [ai, bi]表示树中的节点 ai 和 bi 之间有一条边。
返回长度为 n 的数组 answer ,其中 answer[i] 是树中第 i 个节点与所有其他节点之间的距离之和。
示例 1:
输入: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]]
输出: [8,12,6,10,10,10]
解释: 树如图所示。
我们可以计算出 dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5)
也就是 1 + 1 + 2 + 2 + 2 = 8。 因此,answer[0] = 8,以此类推。
示例 2:
输入: n = 1, edges = []
输出: [0]
示例 3:
输入: n = 2, edges = [[1,0]]
输出: [1,1]
参数:
1 <= n <= 3 * 104
edges.length == n - 1
edges[i].length == 2
0 <= ai, bi < n
ai != bi
给定的输入保证为有效的树

深度优先搜索

假定节点0是树的根。
一,通过深度优先搜索计算m_vSubNodeCounts[i] ,以i为根节点的子树的节点数量。
二,通过深度优先搜索计算0到所有节点的距离。
DFSDis返回值是: cur到所有子孙节点的距离。
三,深度优先搜索,通过父节点到各点距离,计算当前节点到各点距离。
当前节点 和 当前节点的子孙节点 到 当前节点 的距离比到当前节点的父节点少1。
其它节点 到当前节点的距离比到当前节点的父节点的距离多1。

代码

核心代码

class CNeiBo2
{
public:CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);}CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase){m_vNeiB.resize(n);for (const auto& v : edges){m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase);if (!bDirect){m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase);}}}inline void Add(int iNode1, int iNode2){iNode1 -= m_iBase;iNode2 -= m_iBase;m_vNeiB[iNode1].emplace_back(iNode2);if (!m_bDirect){m_vNeiB[iNode2].emplace_back(iNode1);}}const int m_iN;const bool m_bDirect;const int m_iBase;vector<vector<int>> m_vNeiB;
};class Solution {
public:vector<int> sumOfDistancesInTree(int n, vector<vector<int>>& edges) {m_vSubNodeCounts.resize(n);m_vRet.resize(n);CNeiBo2 neiBo(n, edges, false);DFSSubNodeCount(neiBo, 0, -1);m_vRet[0] = DFSDis(neiBo, 0, -1);DFS(neiBo, 0, -1);return m_vRet;}void DFS(const CNeiBo2& neiBo, int cur, int parent){if (-1 != parent){m_vRet[cur] = m_vRet[parent] - m_vSubNodeCounts[cur] + (m_vSubNodeCounts.size() - m_vSubNodeCounts[cur]);}for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}DFS(neiBo, next, cur);}}int DFSSubNodeCount(const CNeiBo2& neiBo,int cur,int parent){int iRet = 1;for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}iRet += DFSSubNodeCount(neiBo, next, cur);}return m_vSubNodeCounts[cur] = iRet;}int DFSDis(const CNeiBo2& neiBo, int cur, int parent)	{int iDis = m_vSubNodeCounts[cur]-1;for (const auto& next : neiBo.m_vNeiB[cur]){if (parent == next){continue;}iDis += DFSDis(neiBo, next, cur);}return iDis;}vector<int> m_vSubNodeCounts,m_vRet;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{int n;vector<vector<int>> edges;{Solution sln;n = 6, edges = { {0,1},{0,2},{2,3},{2,4},{2,5} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{8, 12, 6, 10, 10, 10}, res);}{Solution sln;n = 1, edges = {};auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{0}, res);}{Solution sln;n = 2, edges = { {1,0} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{1,1}, res);}{Solution sln;n = 3, edges = { {2,1},{0,2} };auto res = sln.sumOfDistancesInTree(n, edges);Assert(vector<int>{3,3,2}, res);}
}

2023年1月

class Solution {
public:
vector sumOfDistancesInTree(int n, vector<vector>& edges) {
m_n = n;
m_vChildDis.assign(n, -1);
m_vChildNum.resize(n, -1);
m_vNP.resize(n);
m_vTotalNum.resize(n);
for (auto& e : edges)
{
m_vNP[e[0]].push_back(e[1]);
m_vNP[e[1]].push_back(e[0]);
}
dfs1(0, -1);
dfs2(0, -1);
return m_vTotalNum;
}
void dfs1(int iCur, const int iParent)
{
int iDis = 0;
int iNum = 0;
for (const auto& next : m_vNP[iCur])
{
if (iParent == next)
{
continue;
}
dfs1(next, iCur);
iDis += m_vChildDis[next];
iNum += m_vChildNum[next];
}
m_vChildDis[iCur] = iDis + iNum;
m_vChildNum[iCur] = iNum+1;
}
void dfs2(int iCur, const int iParent)
{
if (-1 == iParent)
{
m_vTotalNum[iCur] = m_vChildDis[iCur];
}
else
{
m_vTotalNum[iCur] = m_vTotalNum[iParent] - m_vChildDis[iCur] - m_vChildNum[iCur] + (m_n - m_vChildNum[iCur]) + m_vChildDis[iCur];
}
for (const auto& next : m_vNP[iCur])
{
if (iParent == next)
{
continue;
}
dfs2(next, iCur);
}
}
vector m_vChildDis;//距离子孙节点之和
vector m_vChildNum;//子孙数量之和+1
vector m_vTotalNum;
int m_n;
vector < vector > m_vNP;
};

2023年 6月

class Solution {
public:
vector sumOfDistancesInTree(int n, vector<vector>& edges) {
m_vTotalDis.resize(n);
m_vNodeNum.resize(n);
m_vLeve.resize(n);
m_vParent.assign(n, -1);
CNeiBo2 neiBo(n, edges, false);
DSFLeveAndNodeCount(neiBo.m_vNeiB, 0, -1);
m_vTotalDis[0] = std::accumulate(m_vLeve.begin(), m_vLeve.end(), 0);
//必须按父子顺序出来
DFS(neiBo.m_vNeiB, 0, -1);
return m_vTotalDis;
}
void DFS(vector<vector>& neiBo, int iCur, int iParent)
{
if (-1 != iParent)
{
m_vTotalDis[iCur] = m_vTotalDis[m_vParent[iCur]] - m_vNodeNum[iCur] + (m_vNodeNum[0] - m_vNodeNum[iCur]);
}
for (const auto& next : neiBo[iCur])
{
if (next == iParent)
{
continue;
}
DFS(neiBo, next, iCur);
}
}
void DSFLeveAndNodeCount( vector<vector>& neiBo,int iCur,int iParent)
{
if (-1 != iParent)
{
m_vLeve[iCur] = m_vLeve[iParent] + 1;
m_vParent[iCur] = iParent;
}
m_vNodeNum[iCur] = 1;
for (const auto& next : neiBo[iCur])
{
if (next == iParent)
{
continue;
}
DSFLeveAndNodeCount(neiBo,next, iCur);
m_vNodeNum[iCur] += m_vNodeNum[next];
}
}
vector m_vTotalDis,m_vNodeNum,m_vLeve,m_vParent;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【深度优先搜索】【C++算法】834 树中距离之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/646565

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表