基于Pixhawk和ROS搭建自主无人车(五):SLAM导航篇

2024-01-26 04:44

本文主要是介绍基于Pixhawk和ROS搭建自主无人车(五):SLAM导航篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考

  • PX4 Autopilot User Guide
  • ArduPilot Documentation
  • 基于Pixhawk和ROS搭建自主无人车(文章链接汇总)

1. 硬件平台

在这里插入图片描述

2. 环境搭建

2.1 创建工作空间

$ cd
$ mkdir -p mav_ws/src
$ cd mav_ws
$ catkin_init_workspace

ROS命令 catkin_init_workspace 分析

2.2 安装 RPLiDAR 包

$ cd ~/mav_ws/src
$ git clone https://github.com/Slamtec/rplidar_ros.git

2.3 安装 Cartographer

  • 先安装一些工具

    $ sudo apt-get update
    $ sudo apt-get install -y python-wstool python-rosdep ninja-build stow
    # noetic 则使用下行代码,上行默认为 melodic 版本
    $ sudo apt-get install -y python3-wstool python3-rosdep ninja-build stow
    
  • 使用 wstool 重新初始化工作区,然后合并 cartographer_ros.rosinstall 文件并获取依赖项的代码

    $ cd ~/mav_ws
    $ wstool init src
    $ wstool merge -t src https://raw.githubusercontent.com/googlecartographer/cartographer_ros/master/cartographer_ros.rosinstall
    $ wstool update -t src
    
  • 安装 proto3 和 abseil

    $ wget http://fishros.com/install -O fishros && bash fishros  # 根据提示选择 3 安装 rosdepc 
    $ src/cartographer/scripts/install_proto3.sh
    $ sudo rosdepc init
    $ rosdepc update
    # 进行下一步之前,先注释 cartographer 包下 package.xml 中该行代码:(<depend>libabsl-dev</depend>)  
    $ src/cartographer/scripts/install_abseil.sh
    $ rosdepc install --from-paths src --ignore-src --rosdistro=${ROS_DISTRO} -y
    
  • 安装 robot_pose_publisher(使用 TF 发布机器人相对于地图位置的节点)

    $ cd ~/mav_ws/src
    $ git clone https://github.com/GT-RAIL/robot_pose_publisher.git
    
  • 创建 cartographer.launch 文件

    $ cd ~/mav_ws/src/cartographer_ros/cartographer_ros/launch
    $ gedit cartographer.launch
    
    <!-- cartographer.launch -->
    <launch><param name="/use_sim_time" value="false" /><node name="cartographer_node"pkg="cartographer_ros"type="cartographer_node"args="-configuration_directory $(find cartographer_ros)/configuration_files -configuration_basename cartographer.lua"output="screen"><remap from="odom" to="/mavros/local_position/odom" /><remap from="imu" to="/mavros/imu/data" /></node><node name="cartographer_occupancy_grid_node"pkg="cartographer_ros"type="cartographer_occupancy_grid_node" /><node name="robot_pose_publisher"pkg="robot_pose_publisher"type="robot_pose_publisher"respawn="false"output="screen" ><param name="is_stamped" type="bool" value="true"/><remap from="robot_pose" to="/mavros/vision_pose/pose" /></node><node pkg="tf" type="static_transform_publisher" name="base_to_laser_broadcaster" args="0 0 0 0 0 0 base_link laser 100" />
    </launch>
    
  • 创建 cartographer.lua 脚本文件

    $ cd ~/mav_ws/src/cartographer_ros/cartographer_ros/configuration_files
    $ gedit cartographer.lua
    
    include "map_builder.lua"
    include "trajectory_builder.lua"options = {map_builder = MAP_BUILDER,trajectory_builder = TRAJECTORY_BUILDER,map_frame = "map",tracking_frame = "base_link",published_frame = "base_link",odom_frame = "odom",provide_odom_frame = true,publish_frame_projected_to_2d = false,use_odometry = false,use_nav_sat = false,use_landmarks = false,num_laser_scans = 1,num_multi_echo_laser_scans = 0,num_subdivisions_per_laser_scan = 1,num_point_clouds = 0,lookup_transform_timeout_sec = 0.2,submap_publish_period_sec = 0.3,pose_publish_period_sec = 5e-3,trajectory_publish_period_sec = 30e-3,rangefinder_sampling_ratio = 1.,odometry_sampling_ratio = 1.,fixed_frame_pose_sampling_ratio = 1.,imu_sampling_ratio = 1.,landmarks_sampling_ratio = 1.,
    }MAP_BUILDER.use_trajectory_builder_2d = trueTRAJECTORY_BUILDER_2D.min_range = 0.05
    TRAJECTORY_BUILDER_2D.max_range = 30
    TRAJECTORY_BUILDER_2D.missing_data_ray_length = 8.5
    TRAJECTORY_BUILDER_2D.use_imu_data = false
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.translation_weight = 0.2
    TRAJECTORY_BUILDER_2D.ceres_scan_matcher.rotation_weight = 5
    TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
    TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.linear_search_window = 0.1
    TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.translation_delta_cost_weight = 1.
    TRAJECTORY_BUILDER_2D.real_time_correlative_scan_matcher.rotation_delta_cost_weight = 10
    TRAJECTORY_BUILDER_2D.motion_filter.max_angle_radians = math.rad(0.2)
    -- for current lidar only 1 is good value
    TRAJECTORY_BUILDER_2D.num_accumulated_range_data = 1TRAJECTORY_BUILDER_2D.min_z = -0.5
    TRAJECTORY_BUILDER_2D.max_z = 0.5POSE_GRAPH.constraint_builder.min_score = 0.65
    POSE_GRAPH.constraint_builder.global_localization_min_score = 0.65
    POSE_GRAPH.optimization_problem.huber_scale = 1e2
    POSE_GRAPH.optimize_every_n_nodes = 30return options
    

2.4 编译工作空间

$ cd ~/mav_ws
$ catkin build
$ source devel/setup.bash

catkin_make 和catkin build这两个命令的区别

2.5 启动

  • 启动 roscore

    $ roscore
    
  • 启动激光雷达节点

    # 本文使用 RPLiDAR A1 型号激光雷达,根据不同型号替换 rplidar_a1.launch
    $ roslaunch rplidar_ros rplidar_a1.launch
    
    <!-- rplidar_a1.launch -->
    <!-- 注意查看激光雷达连接机载电脑的端口号 /dev/ttyUSB0 -->
    <launch><node name="rplidarNode"          pkg="rplidar_ros"  type="rplidarNode" output="screen"><param name="serial_port"         type="string" value="/dev/ttyUSB0"/><param name="serial_baudrate"     type="int"    value="115200"/><param name="frame_id"            type="string" value="laser"/><param name="inverted"            type="bool"   value="false"/><param name="angle_compensate"    type="bool"   value="true"/></node>
    </launch>
    
  • 启动 cartographer

    $ roslaunch cartographer_ros cartographer.launch
    
  • 启动 MAVROS 通信

    $ roslaunch mavros apm.launch
    

    基于Pixhawk和ROS搭建自主无人车(三):ROS通信篇

3. 配置 APM 固件参数

  • 打开 Mission Planner 地面站,在全部参数表中配置以下参数(记得写入参数并重启地面站

    AHRS_EKF_TYPE = 3
    EK2_ENABLE = 0
    EK3_ENABLE = 1
    EK3_SRC1_POSXY = 6
    EK3_SRC1_POSZ = 1
    EK3_SRC1_VELXY = 6
    EK3_SRC1_VELZ = 6
    EK3_SRC1_YAW = 6
    GPS_TYPE = 0
    VISO_TYPE = 1
    ARMING_CHECK = 388598
    
  • 在飞行数据界面地图上右键,然后选择 “设置家在此” >> “Set Home Here” >> “Set EKF Origin Here”,车辆应立即出现在地图上
    在这里插入图片描述

4. 测试

  • 要确认 ROS 端正常工作,请输入以下命令,并且应显示 cartographer 位置估计的实时更新
    $ rostopic echo /mavros/vision_pose/pose
    $ rostopic info /mavros/vision_pose/pose
    

在这里插入图片描述

在这里插入图片描述

  • 打开 Mission Planner 地面站,在飞行数据界面按 Ctrl+F,然后点击 MAVLink Inspector,出现以下界面证明 VISION_POSITION_ESTIMATE 消息已成功发送到飞控
    在这里插入图片描述

5. 报错解决

  • FreArm:Fence requires position:将参数 FENCE_ENABLE 设置为 0
    在这里插入图片描述

  • FreArm:servo function 33 unassigned:下述方法可行???

    • ardupilot rover ardurover 电机相关源码 PreArm servo function 33 unassigned

这篇关于基于Pixhawk和ROS搭建自主无人车(五):SLAM导航篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645665

相关文章

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

使用DeepSeek搭建个人知识库(在笔记本电脑上)

《使用DeepSeek搭建个人知识库(在笔记本电脑上)》本文介绍了如何在笔记本电脑上使用DeepSeek和开源工具搭建个人知识库,通过安装DeepSeek和RAGFlow,并使用CherryStudi... 目录部署环境软件清单安装DeepSeek安装Cherry Studio安装RAGFlow设置知识库总

Linux搭建Mysql主从同步的教程

《Linux搭建Mysql主从同步的教程》:本文主要介绍Linux搭建Mysql主从同步的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux搭建mysql主从同步1.启动mysql服务2.修改Mysql主库配置文件/etc/my.cnf3.重启主库my

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

怎么关闭Ubuntu无人值守升级? Ubuntu禁止自动更新的技巧

《怎么关闭Ubuntu无人值守升级?Ubuntu禁止自动更新的技巧》UbuntuLinux系统禁止自动更新的时候,提示“无人值守升级在关机期间,请不要关闭计算机进程”,该怎么解决这个问题?详细请看... 本教程教你如何处理无人值守的升级,即 Ubuntu linux 的自动系统更新。来源:https://

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步