基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)

本文主要是介绍基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型简介

边缘计算资源调度优化模型是为了解决边缘计算场景下的资源分配和任务调度问题而提出的一种数学模型。该模型旨在通过优化算法来实现资源的有效利用和任务的高效执行,以提高边缘计算系统的性能和用户的服务体验。

在边缘计算资源调度优化模型中,可以考虑以下几个方面的因素:

  1. 资源异构性:边缘计算节点通常具有不同的处理能力、存储容量和网络带宽等资源。模型需要考虑这些异构性,以便合理分配任务和资源。

  2. 任务特性:不同的任务可能对资源的需求不同,例如计算密集型任务需要更多的处理能力,而数据密集型任务需要更多的存储容量。模型需要根据任务的特性进行任务调度和资源分配。

  3. 优化指标:模型需要定义适当的优化指标,以衡量资源调度和任务分配的效果。常见的优化指标包括任务完成时间、资源利用率、能耗等。

  4. 约束条件:模型需要考虑各种约束条件,例如边缘节点的能力限制、任务之间的依赖关系等。这些约束条件将影响资源调度和任务分配的决策。

通过建立边缘计算资源调度优化模型,可以利用数学规划、排队模型、状态转移模型等方法进行理论分析、性能对比和仿真验证。这些方法可以帮助评估不同调度算法的性能和可靠性,并为寻找最优解提供参考。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 150;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为150时:所有矿工的利润随迭代次数的变化如下图所示

在这里插入图片描述

算法得到的每个矿工的资源分配策略:

1.99412153757286	0.213639696936330
1.99719974562881	0.0135018811815468
1.99030731177272	0.839589872496645
1.98091882575326	0.380799781071672
1.99963936979768	0.916345461814080
1.99742226782594	0.316956722548928
1.99927530876850	0.0281535756344704
1.99504617462500	0.0830259682579953
1.99793690177606	0.0349084362471747
1.99802352959078	0.793679089176611
1.99963069326009	0.0275442218097952
1.99889944329012	0.197317485876760
1.99691390897909	0.286247343838041
1.99819750062006	0.388661772801486
1.96109031597808	0.0896261986840417
1.99537185599260	0.124588859917425
1.99893034952111	0.228362573215916
1.98110948100446	0.0846730229500122
1.96348109188453	0.0195168036245180
1.99946104629762	0.0195168036245180
1.99927530876850	0.0519136656495319
1.98477932268626	0.0830259682579953
1.99965025571609	0.588024469787229
1.99018355288023	0.736721605905127
1.99704688863079	0.160264752245246
1.98344425548849	0.113311931134876
1.98562956204741	0.267606706863208
1.97341509692747	0.0195168036245180
1.99704688863079	0.0929880951254843
1.99240257910290	0.0258015285802723
1.99775818928565	0.587297835715809
1.99879731203364	0.124588859917425
1.99707106598800	0.167453510257214
1.99828751473808	0.344603587153533
1.99114427094461	0.112953438966818
1.99637588470065	0.124588859917425
1.99462677705535	0.144059235571490
1.99940590685003	0.306982030615923
1.98551770270590	0.135350279025327
1.98478320251882	0.145731144009149
1.99987081676184	0.115749351098812
1.97339720731578	0.548334927863824
1.99707106598800	0.227627407005210
1.99306057744781	0.166835729361333
1.99719974562881	0.869989908833790
1.99336465582306	0.868854351077229
1.97112087416574	0.909877516905499
1.99704688863079	0.195678775259336
1.99361611660357	0.0195168036245180
1.99924960684812	0.0786223439696734
1.99805463994861	0.160535285872813
1.99796718193098	0.160729109533688
1.99802145247659	0.357655783257472
1.99822489403769	0.193112802360227
1.99441945135259	0.489474757635119
1.98873078218780	0.125679034372269
1.99707106598800	0.159531501829776
1.99893034952111	0.695217320422736
1.99601366614865	0.224719711472197
1.99742226782594	0.306982030615923
1.99704688863079	0.0511681723352714
1.95054065027596	0.0329562153408647
1.99617724103491	0.565636649612600
1.99704688863079	0.695217320422736
1.99707106598800	0.379634755669634
1.96231178988297	0.0286714818205358
1.99601366614865	0.327581206701412
1.99813967011449	0.388917625763320
1.99842908553795	0.145731144009149
1.99793690177606	0.352998651765789
1.99749744785110	0.447463497671282
1.99742226782594	0.559236379141531
1.99704688863079	0.595900122289976
1.98649667458916	0.111500819942811
1.99441944900560	0.128627225719388
1.99761532908333	0.168684305689187
1.99704688863079	0.0689534245390798
1.99963069326009	0.275368036933114
1.99707106598800	0.199334841452843
1.99939400306292	0.607283821888828
1.99783468733844	0.239153501911200
1.99704688863079	0.0707497674932641
1.99147840234302	0.911114830018717
1.99479721083810	0.316503090967020
1.99856708512974	0.321294543563116
1.99963069326009	0.0542204755761725
1.99704688863079	0.0113722838765553
1.99856708512974	0.853882597012484
1.99704688863079	0.0307153437364726
1.98842860848110	0.160729109533688
1.99686371640812	0.476864675140650
1.98875437698640	0.105523423165292
1.99867080315478	0.0231594336150387
1.99944410836304	0.0302833986026322
1.99401589786631	0.128627225719388
1.99876140662821	0.116500732389848
1.99629517961257	0.674464752659880
1.99370463757934	0.321294543563116
1.97964223102991	0.114256738846526
1.99856708512974	0.457725876070183
1.99707106598800	0.0337671327424851
1.99793690177606	0.0195168036245180
1.97580590335981	0.0177682246732739
1.99987081676184	0.0989507558819646
1.99352800575763	0.133205158731482
1.99692415173601	0.418832868597602
1.99617724103491	0.228290835776622
1.99796718193098	0.0743630970527058
1.99560412058417	0.778337847707958
1.99456802582904	0.343130865247205
1.99761532908333	0.0719456438187934
1.91234128050033	0.114056617749879
1.99842908553795	0.348727429788241
1.99763505349643	0.239153501911200
1.91790129062425	0.0195168036245180
1.99856708512974	0.219554199825291
1.99952848643763	0.131829874479961
1.99704688863079	0.116500732389848
1.99704688863079	0.0910214690016486
1.95806288783774	0.0117840673751565
1.99631435309204	0.213873465779684
1.95846867958255	0.0797481523171234
1.99692415173601	0.136230639526073
1.99617724103491	0.125679034372269
1.99707106598800	0.742727201266903
1.99456802582904	0.255163553653860
1.99234901527462	0.233657683989557
1.99240257910290	0.0517958289602273
1.96817025807002	0.0135018811815468
1.98182478730626	0.0513471606647600
1.99704688863079	0.461252651847447
1.99598481467818	0.331774111870895
1.97998911344444	0.0830259682579953
1.99987081676184	0.123571228411066
1.99704688863079	0.415670858474310
1.99456802582904	0.144722532505212
1.99704688863079	0.0978991710579884
1.94424824361259	0.0758363328327892
1.98847429288657	0.181132711754597
1.99704688863079	0.0490614501266261
1.98653885023645	0.0512485009352284
1.99038354161480	0.0258015285802723
1.93327333608551	0.0258015285802723
1.99977452274523	0.0882565614113161
1.99860606263000	0.0486702562377412
1.99494747408547	0.0567647288415154
1.94154702342798	0.0552663163078567
1.64839222782841	0.0135018811815468
1.96963677254490	0.0258015285802723

三、完整MATLAB代码

这篇关于基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/645191

相关文章

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S