基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)

本文主要是介绍基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型简介

边缘计算资源调度优化模型是为了解决边缘计算场景下的资源分配和任务调度问题而提出的一种数学模型。该模型旨在通过优化算法来实现资源的有效利用和任务的高效执行,以提高边缘计算系统的性能和用户的服务体验。

在边缘计算资源调度优化模型中,可以考虑以下几个方面的因素:

  1. 资源异构性:边缘计算节点通常具有不同的处理能力、存储容量和网络带宽等资源。模型需要考虑这些异构性,以便合理分配任务和资源。

  2. 任务特性:不同的任务可能对资源的需求不同,例如计算密集型任务需要更多的处理能力,而数据密集型任务需要更多的存储容量。模型需要根据任务的特性进行任务调度和资源分配。

  3. 优化指标:模型需要定义适当的优化指标,以衡量资源调度和任务分配的效果。常见的优化指标包括任务完成时间、资源利用率、能耗等。

  4. 约束条件:模型需要考虑各种约束条件,例如边缘节点的能力限制、任务之间的依赖关系等。这些约束条件将影响资源调度和任务分配的决策。

通过建立边缘计算资源调度优化模型,可以利用数学规划、排队模型、状态转移模型等方法进行理论分析、性能对比和仿真验证。这些方法可以帮助评估不同调度算法的性能和可靠性,并为寻找最优解提供参考。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 150;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为150时:所有矿工的利润随迭代次数的变化如下图所示

在这里插入图片描述

算法得到的每个矿工的资源分配策略:

1.99412153757286	0.213639696936330
1.99719974562881	0.0135018811815468
1.99030731177272	0.839589872496645
1.98091882575326	0.380799781071672
1.99963936979768	0.916345461814080
1.99742226782594	0.316956722548928
1.99927530876850	0.0281535756344704
1.99504617462500	0.0830259682579953
1.99793690177606	0.0349084362471747
1.99802352959078	0.793679089176611
1.99963069326009	0.0275442218097952
1.99889944329012	0.197317485876760
1.99691390897909	0.286247343838041
1.99819750062006	0.388661772801486
1.96109031597808	0.0896261986840417
1.99537185599260	0.124588859917425
1.99893034952111	0.228362573215916
1.98110948100446	0.0846730229500122
1.96348109188453	0.0195168036245180
1.99946104629762	0.0195168036245180
1.99927530876850	0.0519136656495319
1.98477932268626	0.0830259682579953
1.99965025571609	0.588024469787229
1.99018355288023	0.736721605905127
1.99704688863079	0.160264752245246
1.98344425548849	0.113311931134876
1.98562956204741	0.267606706863208
1.97341509692747	0.0195168036245180
1.99704688863079	0.0929880951254843
1.99240257910290	0.0258015285802723
1.99775818928565	0.587297835715809
1.99879731203364	0.124588859917425
1.99707106598800	0.167453510257214
1.99828751473808	0.344603587153533
1.99114427094461	0.112953438966818
1.99637588470065	0.124588859917425
1.99462677705535	0.144059235571490
1.99940590685003	0.306982030615923
1.98551770270590	0.135350279025327
1.98478320251882	0.145731144009149
1.99987081676184	0.115749351098812
1.97339720731578	0.548334927863824
1.99707106598800	0.227627407005210
1.99306057744781	0.166835729361333
1.99719974562881	0.869989908833790
1.99336465582306	0.868854351077229
1.97112087416574	0.909877516905499
1.99704688863079	0.195678775259336
1.99361611660357	0.0195168036245180
1.99924960684812	0.0786223439696734
1.99805463994861	0.160535285872813
1.99796718193098	0.160729109533688
1.99802145247659	0.357655783257472
1.99822489403769	0.193112802360227
1.99441945135259	0.489474757635119
1.98873078218780	0.125679034372269
1.99707106598800	0.159531501829776
1.99893034952111	0.695217320422736
1.99601366614865	0.224719711472197
1.99742226782594	0.306982030615923
1.99704688863079	0.0511681723352714
1.95054065027596	0.0329562153408647
1.99617724103491	0.565636649612600
1.99704688863079	0.695217320422736
1.99707106598800	0.379634755669634
1.96231178988297	0.0286714818205358
1.99601366614865	0.327581206701412
1.99813967011449	0.388917625763320
1.99842908553795	0.145731144009149
1.99793690177606	0.352998651765789
1.99749744785110	0.447463497671282
1.99742226782594	0.559236379141531
1.99704688863079	0.595900122289976
1.98649667458916	0.111500819942811
1.99441944900560	0.128627225719388
1.99761532908333	0.168684305689187
1.99704688863079	0.0689534245390798
1.99963069326009	0.275368036933114
1.99707106598800	0.199334841452843
1.99939400306292	0.607283821888828
1.99783468733844	0.239153501911200
1.99704688863079	0.0707497674932641
1.99147840234302	0.911114830018717
1.99479721083810	0.316503090967020
1.99856708512974	0.321294543563116
1.99963069326009	0.0542204755761725
1.99704688863079	0.0113722838765553
1.99856708512974	0.853882597012484
1.99704688863079	0.0307153437364726
1.98842860848110	0.160729109533688
1.99686371640812	0.476864675140650
1.98875437698640	0.105523423165292
1.99867080315478	0.0231594336150387
1.99944410836304	0.0302833986026322
1.99401589786631	0.128627225719388
1.99876140662821	0.116500732389848
1.99629517961257	0.674464752659880
1.99370463757934	0.321294543563116
1.97964223102991	0.114256738846526
1.99856708512974	0.457725876070183
1.99707106598800	0.0337671327424851
1.99793690177606	0.0195168036245180
1.97580590335981	0.0177682246732739
1.99987081676184	0.0989507558819646
1.99352800575763	0.133205158731482
1.99692415173601	0.418832868597602
1.99617724103491	0.228290835776622
1.99796718193098	0.0743630970527058
1.99560412058417	0.778337847707958
1.99456802582904	0.343130865247205
1.99761532908333	0.0719456438187934
1.91234128050033	0.114056617749879
1.99842908553795	0.348727429788241
1.99763505349643	0.239153501911200
1.91790129062425	0.0195168036245180
1.99856708512974	0.219554199825291
1.99952848643763	0.131829874479961
1.99704688863079	0.116500732389848
1.99704688863079	0.0910214690016486
1.95806288783774	0.0117840673751565
1.99631435309204	0.213873465779684
1.95846867958255	0.0797481523171234
1.99692415173601	0.136230639526073
1.99617724103491	0.125679034372269
1.99707106598800	0.742727201266903
1.99456802582904	0.255163553653860
1.99234901527462	0.233657683989557
1.99240257910290	0.0517958289602273
1.96817025807002	0.0135018811815468
1.98182478730626	0.0513471606647600
1.99704688863079	0.461252651847447
1.99598481467818	0.331774111870895
1.97998911344444	0.0830259682579953
1.99987081676184	0.123571228411066
1.99704688863079	0.415670858474310
1.99456802582904	0.144722532505212
1.99704688863079	0.0978991710579884
1.94424824361259	0.0758363328327892
1.98847429288657	0.181132711754597
1.99704688863079	0.0490614501266261
1.98653885023645	0.0512485009352284
1.99038354161480	0.0258015285802723
1.93327333608551	0.0258015285802723
1.99977452274523	0.0882565614113161
1.99860606263000	0.0486702562377412
1.99494747408547	0.0567647288415154
1.94154702342798	0.0552663163078567
1.64839222782841	0.0135018811815468
1.96963677254490	0.0258015285802723

三、完整MATLAB代码

这篇关于基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645191

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom