基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)

本文主要是介绍基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、优化模型简介

边缘计算资源调度优化模型是为了解决边缘计算场景下的资源分配和任务调度问题而提出的一种数学模型。该模型旨在通过优化算法来实现资源的有效利用和任务的高效执行,以提高边缘计算系统的性能和用户的服务体验。

在边缘计算资源调度优化模型中,可以考虑以下几个方面的因素:

  1. 资源异构性:边缘计算节点通常具有不同的处理能力、存储容量和网络带宽等资源。模型需要考虑这些异构性,以便合理分配任务和资源。

  2. 任务特性:不同的任务可能对资源的需求不同,例如计算密集型任务需要更多的处理能力,而数据密集型任务需要更多的存储容量。模型需要根据任务的特性进行任务调度和资源分配。

  3. 优化指标:模型需要定义适当的优化指标,以衡量资源调度和任务分配的效果。常见的优化指标包括任务完成时间、资源利用率、能耗等。

  4. 约束条件:模型需要考虑各种约束条件,例如边缘节点的能力限制、任务之间的依赖关系等。这些约束条件将影响资源调度和任务分配的决策。

通过建立边缘计算资源调度优化模型,可以利用数学规划、排队模型、状态转移模型等方法进行理论分析、性能对比和仿真验证。这些方法可以帮助评估不同调度算法的性能和可靠性,并为寻找最优解提供参考。

在本文所研究的区块链网络中,优化的变量为:挖矿决策(即 m)和资源分配(即 p 和 f),目标函数是使所有矿工的总利润最大化。问题可以表述为:

max ⁡ m , p , f F miner  = ∑ i ∈ N ′ F i miner  s.t.  C 1 : m i ∈ { 0 , 1 } , ∀ i ∈ N C 2 : p min ⁡ ≤ p i ≤ p max ⁡ , ∀ i ∈ N ′ C 3 : f min ⁡ ≤ f i ≤ f max ⁡ , ∀ i ∈ N ′ C 4 : ∑ i ∈ N ′ f i ≤ f total  C 5 : F M S P ≥ 0 C 6 : T i t + T i m + T i o ≤ T i max ⁡ , ∀ i ∈ N ′ \begin{aligned} \max _{\mathbf{m}, \mathbf{p}, \mathbf{f}} & F^{\text {miner }}=\sum_{i \in \mathcal{N}^{\prime}} F_{i}^{\text {miner }} \\ \text { s.t. } & C 1: m_{i} \in\{0,1\}, \forall i \in \mathcal{N} \\ & C 2: p^{\min } \leq p_{i} \leq p^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 3: f^{\min } \leq f_{i} \leq f^{\max }, \forall i \in \mathcal{N}^{\prime} \\ & C 4: \sum_{i \in \mathcal{N}^{\prime}} f_{i} \leq f^{\text {total }} \\ & C 5: F^{M S P} \geq 0 \\ & C 6: T_{i}^{t}+T_{i}^{m}+T_{i}^{o} \leq T_{i}^{\max }, \forall i \in \mathcal{N}^{\prime} \end{aligned} m,p,fmax s.t. Fminer =iNFiminer C1:mi{0,1},iNC2:pminpipmax,iNC3:fminfifmax,iNC4:iNfiftotal C5:FMSP0C6:Tit+Tim+TioTimax,iN
其中:
C1表示每个矿工可以决定是否参与挖矿;
C2 指定分配给每个参与矿机的最小和最大传输功率;
C3 表示分配给每个参与矿工的最小和最大计算资源;
C4表示分配给参与矿机的总计算资源不能超过MEC服务器的总容量;
C5保证MSP的利润不小于0;
C6 规定卸载、挖掘和传播步骤的总时间不能超过最长时间约束。
在所研究的区块链网络中,我们假设 IoTD 是同质的,并且每个 IoTD 都具有相同的传输功率范围和相同的计算资源范围。
上式中:
F i m i n e r = ( w + α D i ) P i m ( 1 − P i o ) − c 1 E i t − c 2 f i , ∀ i ∈ N ′ R i = B log ⁡ 2 ( 1 + p i H i σ 2 + ∑ j ∈ N ′ \ i m j p j H j ) , ∀ i ∈ N ′ T i t = D i R i , ∀ i ∈ N ′ T i m = D i X i f i , ∀ i ∈ N ′ E i m = k 1 f i 3 T i m , ∀ i ∈ N ′ P i m = k 2 T i m , ∀ i ∈ N ′ F M S P = ∑ i ∈ N ′ ( c 2 f i − c 3 E i m ) − c 3 E 0 P i o = 1 − e − λ ( T i o + T i s ) = 1 − e − λ ( z D i + T i t ) , ∀ i ∈ N ′ F_i^{miner}=(w+\alpha D_i)P_i^m(1-P_i^o)-c_1E_i^t-c_2f_i,\forall i\in\mathcal{N'}\\R_{i}=B \log _{2}\left(1+\frac{p_{i} H_{i}}{\sigma^{2}+\sum_{j \in \mathcal{N}^{\prime} \backslash i} m_{j} p_{j} H_{j}}\right), \forall i \in \mathcal{N}^{\prime}\\T_{i}^{t}=\frac{D_{i}}{R_{i}},\forall i\in\mathcal{N}^{\prime}\\T_{i}^{m}=\frac{D_{i}X_{i}}{f_{i}},\forall i\in\mathcal{N}'\\E_i^m=k_1f_i^3T_i^m,\forall i\in\mathcal{N}'\\P_i^m=\frac{k_2}{T_i^m},\forall i\in\mathcal{N}^{\prime}\\F^{MSP}=\sum_{i\in\mathcal{N}^{\prime}}\left(c_2f_i-c_3E_i^m\right)-c_3E_0\\\begin{aligned} P_{i}^{o}& =1-e^{-\lambda(T_{i}^{o}+T_{i}^{s})} \\ &=1-e^{-\lambda(zD_{i}+T_{i}^{t})},\forall i\in\mathcal{N}^{\prime} \end{aligned} Fiminer=(w+αDi)Pim(1Pio)c1Eitc2fi,iNRi=Blog2(1+σ2+jN\imjpjHjpiHi),iNTit=RiDi,iNTim=fiDiXi,iNEim=k1fi3Tim,iNPim=Timk2,iNFMSP=iN(c2fic3Eim)c3E0Pio=1eλ(Tio+Tis)=1eλ(zDi+Tit),iN

二、差分进化算法求解

2.1部分代码

close all
clear 
clc
dbstop if all error
NP = 150;%矿工数量
para = parametersetting(NP);
para.MaxFEs =5000;%最大迭代次数
Result=Compute(NP,para);
figure(1)
plot(Result.FitCurve,'r-','linewidth',2)
xlabel('FEs')
ylabel('Token')
figure(2)
plot(Result.ConCurve,'g-','linewidth',2)
xlabel('FEs')
ylabel('Con')

2.2部分结果

当矿工数量为150时:所有矿工的利润随迭代次数的变化如下图所示

在这里插入图片描述

算法得到的每个矿工的资源分配策略:

1.99412153757286	0.213639696936330
1.99719974562881	0.0135018811815468
1.99030731177272	0.839589872496645
1.98091882575326	0.380799781071672
1.99963936979768	0.916345461814080
1.99742226782594	0.316956722548928
1.99927530876850	0.0281535756344704
1.99504617462500	0.0830259682579953
1.99793690177606	0.0349084362471747
1.99802352959078	0.793679089176611
1.99963069326009	0.0275442218097952
1.99889944329012	0.197317485876760
1.99691390897909	0.286247343838041
1.99819750062006	0.388661772801486
1.96109031597808	0.0896261986840417
1.99537185599260	0.124588859917425
1.99893034952111	0.228362573215916
1.98110948100446	0.0846730229500122
1.96348109188453	0.0195168036245180
1.99946104629762	0.0195168036245180
1.99927530876850	0.0519136656495319
1.98477932268626	0.0830259682579953
1.99965025571609	0.588024469787229
1.99018355288023	0.736721605905127
1.99704688863079	0.160264752245246
1.98344425548849	0.113311931134876
1.98562956204741	0.267606706863208
1.97341509692747	0.0195168036245180
1.99704688863079	0.0929880951254843
1.99240257910290	0.0258015285802723
1.99775818928565	0.587297835715809
1.99879731203364	0.124588859917425
1.99707106598800	0.167453510257214
1.99828751473808	0.344603587153533
1.99114427094461	0.112953438966818
1.99637588470065	0.124588859917425
1.99462677705535	0.144059235571490
1.99940590685003	0.306982030615923
1.98551770270590	0.135350279025327
1.98478320251882	0.145731144009149
1.99987081676184	0.115749351098812
1.97339720731578	0.548334927863824
1.99707106598800	0.227627407005210
1.99306057744781	0.166835729361333
1.99719974562881	0.869989908833790
1.99336465582306	0.868854351077229
1.97112087416574	0.909877516905499
1.99704688863079	0.195678775259336
1.99361611660357	0.0195168036245180
1.99924960684812	0.0786223439696734
1.99805463994861	0.160535285872813
1.99796718193098	0.160729109533688
1.99802145247659	0.357655783257472
1.99822489403769	0.193112802360227
1.99441945135259	0.489474757635119
1.98873078218780	0.125679034372269
1.99707106598800	0.159531501829776
1.99893034952111	0.695217320422736
1.99601366614865	0.224719711472197
1.99742226782594	0.306982030615923
1.99704688863079	0.0511681723352714
1.95054065027596	0.0329562153408647
1.99617724103491	0.565636649612600
1.99704688863079	0.695217320422736
1.99707106598800	0.379634755669634
1.96231178988297	0.0286714818205358
1.99601366614865	0.327581206701412
1.99813967011449	0.388917625763320
1.99842908553795	0.145731144009149
1.99793690177606	0.352998651765789
1.99749744785110	0.447463497671282
1.99742226782594	0.559236379141531
1.99704688863079	0.595900122289976
1.98649667458916	0.111500819942811
1.99441944900560	0.128627225719388
1.99761532908333	0.168684305689187
1.99704688863079	0.0689534245390798
1.99963069326009	0.275368036933114
1.99707106598800	0.199334841452843
1.99939400306292	0.607283821888828
1.99783468733844	0.239153501911200
1.99704688863079	0.0707497674932641
1.99147840234302	0.911114830018717
1.99479721083810	0.316503090967020
1.99856708512974	0.321294543563116
1.99963069326009	0.0542204755761725
1.99704688863079	0.0113722838765553
1.99856708512974	0.853882597012484
1.99704688863079	0.0307153437364726
1.98842860848110	0.160729109533688
1.99686371640812	0.476864675140650
1.98875437698640	0.105523423165292
1.99867080315478	0.0231594336150387
1.99944410836304	0.0302833986026322
1.99401589786631	0.128627225719388
1.99876140662821	0.116500732389848
1.99629517961257	0.674464752659880
1.99370463757934	0.321294543563116
1.97964223102991	0.114256738846526
1.99856708512974	0.457725876070183
1.99707106598800	0.0337671327424851
1.99793690177606	0.0195168036245180
1.97580590335981	0.0177682246732739
1.99987081676184	0.0989507558819646
1.99352800575763	0.133205158731482
1.99692415173601	0.418832868597602
1.99617724103491	0.228290835776622
1.99796718193098	0.0743630970527058
1.99560412058417	0.778337847707958
1.99456802582904	0.343130865247205
1.99761532908333	0.0719456438187934
1.91234128050033	0.114056617749879
1.99842908553795	0.348727429788241
1.99763505349643	0.239153501911200
1.91790129062425	0.0195168036245180
1.99856708512974	0.219554199825291
1.99952848643763	0.131829874479961
1.99704688863079	0.116500732389848
1.99704688863079	0.0910214690016486
1.95806288783774	0.0117840673751565
1.99631435309204	0.213873465779684
1.95846867958255	0.0797481523171234
1.99692415173601	0.136230639526073
1.99617724103491	0.125679034372269
1.99707106598800	0.742727201266903
1.99456802582904	0.255163553653860
1.99234901527462	0.233657683989557
1.99240257910290	0.0517958289602273
1.96817025807002	0.0135018811815468
1.98182478730626	0.0513471606647600
1.99704688863079	0.461252651847447
1.99598481467818	0.331774111870895
1.97998911344444	0.0830259682579953
1.99987081676184	0.123571228411066
1.99704688863079	0.415670858474310
1.99456802582904	0.144722532505212
1.99704688863079	0.0978991710579884
1.94424824361259	0.0758363328327892
1.98847429288657	0.181132711754597
1.99704688863079	0.0490614501266261
1.98653885023645	0.0512485009352284
1.99038354161480	0.0258015285802723
1.93327333608551	0.0258015285802723
1.99977452274523	0.0882565614113161
1.99860606263000	0.0486702562377412
1.99494747408547	0.0567647288415154
1.94154702342798	0.0552663163078567
1.64839222782841	0.0135018811815468
1.96963677254490	0.0258015285802723

三、完整MATLAB代码

这篇关于基于移动边缘计算 (MEC) 的资源调度分配优化研究(提供MATLAB代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/645191

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <