【易混区分】 tensor张量 Numpy张量的各种矩阵乘法、点积的函数对比 (dot, multiply,*,@matmul)

本文主要是介绍【易混区分】 tensor张量 Numpy张量的各种矩阵乘法、点积的函数对比 (dot, multiply,*,@matmul),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1 矩阵运算基本概念
    • 1.1 点积
    • 1.2 矩阵乘法
  • 2 dot()
  • 3 multiply() 和 *
  • 4 matmul和@

1 矩阵运算基本概念

1.1 点积

又称为数量积、标量积(scalar product)或者内积(inner product)

它是指实数域中的两个向量运算得到一个实数值标量的二元运算。也就是对应元素的位置相乘

举例:

对于向量 a = ( x 1 , y 1 ) 和 b = ( x 2 , y 2 ) ,他们的点积就是 a ⋅ b = x 1 x 2 + y 1 y 2 a=(x_1,y_1)和b=(x_2,y_2),他们的点积就是a·b=x_1x_2+y_1y_2 a=(x1,y1)b=(x2,y2),他们的点积就是ab=x1x2+y1y2

1.2 矩阵乘法

两个运算的矩阵需要满足矩阵乘法规则,即需要前一个矩阵的列和后一个矩阵的行相等

一般我们用矩阵运算

就是Numpy的ndarray和torch的tensor张量 两种矩阵形式进行运算

他们大体相同,有一些小的差异,比如numpy的dot可以实现高维度的矩阵乘法但是torch的dot不可以

下表详细比较了他们之间的差异

运算形式实现结果返回结果
dot函数numpy.dot(a,b) torch.dot(a,b)numpy的dot 可以实现一维度点积及高唯度的矩阵乘法,而torch的dot只能实现一维度点积,不能实现高维度矩阵乘法(报错RuntimeError: 1D tensors expected, but got 2D and 2D tensors)对应位置会加起来,往往返回会是一个数字
multiply()函数 等价于 *numpy.multiply(a,b) torch.multiply(a,b) a*b点乘(和dot不同的是乘完之后不会加起来)返回往往是一个矩阵,两个矩阵必须形状一致对应位置乘完之后不会加起来,往往返回是一个矩阵
matmul()函数等价于@numpy.matmul(a,b) torch.matmul(a,b) 或者torch.mm(a,b) a@b矩阵乘法往往返回是一个矩阵

具体看下面的例子

2 dot()

numpy和torch的dot 可以用在一维的数组相乘,此时相当于两个数组的点积。

例1

import numpy as np
a=np.array([1,2,3])
b=np.array([2,3,4])
print(np.dot(a,b))

输出

20

numpy的dot也可以用在多维数组的相乘,此时是矩阵乘法,所以需要满足矩阵乘法的运算规则,需要前一个矩阵的列和后一个矩阵的行相等

例2

import numpy as np
a=np.array([[1,2,3],[1,2,3]])
b=np.array([[2,3],[3,4],[5,6]])
print(np.dot(a,b))

输出

[[23 29]
[23 29]]

但是torch的dot就会报错

例3

a=torch.tensor([[1,2,3,4],[1,2,3,4]])
b=torch.tensor([[5,6],[7,8],[5,6],[7,8]])
print(a.ndim,b.ndim)
print(torch.dot(a,b))

输出

RuntimeError: 1D tensors expected, but got 2D and 2D tensors

3 multiply() 和 *

两个运算都是相当于点乘,可以实现一维或高维度的点积,参与运算的两个矩阵必须形状一致

(和dot不同的是乘完之后不会加起来)返回往往是一个矩阵

import numpy as np
a=np.array([[1,2,3],[1,2,3]])
b=np.array([[2,3,4],[3,4,5]],)
print("multiply:")
print(np.multiply(a,b))
print("*:")
print(a*b)

输出

multiply:
[[ 2 6 12]
[ 3 8 15]]
*:
[[ 2 6 12]
[ 3 8 15]]

4 matmul和@

matmul 是matrix multiply的缩写,专门用于矩阵乘法,需要满足矩阵乘法的运算规则,需要前一个矩阵的列和后一个矩阵的行相等

import numpy as np
a=np.array([[1,2,3],[1,2,3]])
b=np.array([[2,3],[3,4],[5,6]])
print("matmul:")
print(np.matmul(a,b))
print("@:")
print(a@b)

输出

matmul:
[[23 29]
[23 29]]
@:
[[23 29]
[23 29]]

注意这里的行向量可以列向量,比如

a=np.array([[1,2,3],
[1,2,3]])
b=np.array([2,3,4])

我们如果把b看做1行3列的矩阵,则运算不符合运算规则,但是如果看做3行1列的矩阵,则它是正确的,即2*3 × 3 * 1=2 * 1 即最后会输出一维的向量

import numpy as np
a=np.array([[1,2,3],[1,2,3]])
b=np.array([2,3,4])
print("matmul:")
print(np.matmul(a,b))

输出

matmul:
[20 20]

在PyTorch中,有几种执行矩阵乘法的方式,包括torch.matmultorch.mm@运算符。这些方法之间有一些区别,让我们逐个解释它们:

  1. torch.matmul:

    • torch.matmul是PyTorch中用于执行矩阵乘法的通用函数。
    • 它支持广播(broadcasting),可以处理不同形状的输入矩阵。
    • 对于两个二维矩阵,torch.matmul等效于矩阵乘法。
    • 对于高维张量,torch.matmul会在合适的维度上进行广播,以进行张量间的乘法。
    import torchA = torch.tensor([[1, 2], [3, 4]])
    B = torch.tensor([[5, 6], [7, 8]])result = torch.matmul(A, B)
    
  2. torch.mm:

    • torch.mm是专门用于两个二维矩阵相乘的函数,不支持广播。
    • 输入的两个矩阵必须是二维的,并且符合矩阵乘法的规则。
    import torchA = torch.tensor([[1, 2], [3, 4]])
    B = torch.tensor([[5, 6], [7, 8]])result = torch.mm(A, B)
    
  3. @运算符:

    • @运算符在PyTorch中被重载,用于执行矩阵乘法。
    • 类似于torch.matmul,它支持广播操作。
    import torchA = torch.tensor([[1, 2], [3, 4]])
    B = torch.tensor([[5, 6], [7, 8]])result = A @ B
    

总结:

  • 如果你希望使用通用的矩阵乘法函数,并且想要支持广播,可以使用torch.matmul@运算符。
  • 如果你知道你的输入是二维矩阵且不需要广播,可以使用torch.mm
  • 通常来说,推荐使用torch.matmul@运算符,因为它们更通用,而torch.mm仅限于二维矩阵。

这篇关于【易混区分】 tensor张量 Numpy张量的各种矩阵乘法、点积的函数对比 (dot, multiply,*,@matmul)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642413

相关文章

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定