pytorch模型转换为rknn模型,使用npu推理

2024-01-25 04:50

本文主要是介绍pytorch模型转换为rknn模型,使用npu推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、转换为onnx模型

在yolov5代码中运行export.py,转换为onnx模型,参数根据自己需要修改。

二、创建转换目录

然后在rknn文件夹下,找到onnx2rknn.py、dataset.txt和coco2017数据集,将它们复制到新的文件夹中,作为rknn模型转换目录。将需要转换的onnx模型也放在该目录中。

在这里插入图片描述

我的目录结构如图所示,其中第一个文件夹是已经转换成功的生成目录。

在这里插入图片描述

三、转换为rknn模型

RKNN-Toolkit2 是为用户提供在 PC、 Rockchip NPU平台上进行模型转换、推理和性能评估的开发套件,用户通过该工具提供的 Python 接口可以便捷地完成以下功能:

  1. 🏆模型转换:支持Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型转为 RKNN模型,并支持 RKNN 模型导入导出,RKNN 模型能够在 Rockchip NPU 平台上加载使用。

  2. 🎽量 化 功 能 : 支 持将 浮 点 模 型 量 化 为 定 点 模 型 , 目 前 支 持 的 量 化 方 法 为 非 对 称 量 化 , 并 支 持 混 合 量化 功 能 。asymmetric_quantized-16 目前版本暂不支持。

  3. 🎯模型推理:能够在 PC 上模拟Rockchip NPU 运行 RKNN 模型并获取推理结果;或将 RKNN模型分发到指定的 NPU 设备上进行推理并获取推理结果。

  4. 🏋性能和内存评估:将 RKNN 模型分发到指定 NPU 设备上运行,以评估模型在实际设备上运行时的性能和内存占用情况。

  5. 🎼量化精度分析:该功能将给出模型量化前后每一层推理结果与浮点模型推理结果的余弦距离,以便于分析量化误差是如何出现的,为提高量化模型的精度提供思路。

进入我们之前配置安装有rknn-toolkit2的环境,输入命令进行转换。

python export.py

过程中的日志输出:

(py36) (base) dzh@dzh-Lenovo-Legion-Y7000:~/modelConvert/onnx2rknn$ python onnx2rknn.py 
W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
done
--> Building model
Analysing : 100%|███████████████████████████████████████████████| 168/168 [00:00<00:00, 3731.11it/s]
Quantizating : 100%|█████████████████████████████████████████████| 168/168 [00:00<00:00, 755.22it/s]
W build: The default input dtype of 'images' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of 'output' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '335' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
W build: The default output dtype of '336' is changed from 'float32' to 'int8' in rknn model for performance!Please take care of this change when deploy rknn model with Runtime API!
done
--> Export RKNN model: ./rknn_models/yolov5s-640-640_rm_transpose.rknn
done

然后在rknn_models下可以看到yolov5s-640-640_rm_transpose.rknn文件,重命名下,我们就可以拷贝到开发板上进行目标检测了。

在这里插入图片描述

四、问题记录

W __init__: rknn-toolkit2 version: 1.3.0-11912b58
--> Loading model
W load_onnx: It is recommended onnx opset 12, but your onnx model opset is 10!
W load_onnx: Model converted from pytorch, 'opset_version' should be set 12 in torch.onnx.export for successful convert!More details can be found in examples/pytorch/torch2onnx
E load_onnx: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
W load_onnx: ===================== WARN(3) =====================
E rknn-toolkit2 version: 1.3.0-11912b58
E load_onnx: Catch exception when loading onnx model: /home/dzh/modelConvert/onnx2rknn/yolov5s.onnx!
E load_onnx: Traceback (most recent call last):
E load_onnx:   File "rknn/api/rknn_base.py", line 1182, in rknn.api.rknn_base.RKNNBase.load_onnx
E load_onnx:   File "rknn/api/rknn_base.py", line 663, in rknn.api.rknn_base.RKNNBase._create_ir_and_inputs_meta
E load_onnx:   File "rknn/api/rknn_log.py", line 113, in rknn.api.rknn_log.RKNNLog.e
E load_onnx: ValueError: The len of mean_values ([0, 0, 0]) for input 0 is wrong, expect 12!
load model failed!

pt模型的输入图像的通道一定要和转换时的图像通道数相同,对于RGB图像肯定是3通道。

这篇关于pytorch模型转换为rknn模型,使用npu推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/642134

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa