大数据学习之Flink算子、了解DataStream API(基础篇一)

2024-01-24 10:52

本文主要是介绍大数据学习之Flink算子、了解DataStream API(基础篇一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DataStream API (基础篇)


注: 本文只涉及DataStream

  • 原因:随着大数据和流式计算需求的增长,处理实时数据流变得越来越重要。因此,DataStream由于其处理实时数据流的特性和能力,逐渐替代了DataSet成为了主流的数据处理方式。

目录

DataStream API (基础篇)

前摘:

一、执行环境

1. 创建执行环境

2. 执行模式

3. 触发程序执行

二、源算子(source)

三、转换算子(Transformation)

四、输出算子(sink)


前摘:

一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几 部分构成,如图所示:

  • 获取执行环境(Execution Environment)
  • 读取数据源(Source)
  • 定义基于数据的转换操作(Transformations)
  • 定义计算结果的输出位置(Sink)
  • 触发程序执行(Execute)

其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以本章我们就从执行 环境、数据源(source)、转换操作(Transformation)、输出(Sink)四大部分,对常用的 DataStream API 做基本介绍。

一、执行环境

1. 创建执行环境

  • 编写Flink程序的第一步就是创建执行环境。
  • 我 们 要 获 取 的 执 行 环 境 , 是 StreamExecutionEnvironment 类的对象,这是所有 Flink 程序的基础
  • 在代码中创建执行环境的 方式,就是调用这个类的静态方法,具体有以下三种。
  1. getExecutionEnvironment
    最简单的方式,就是直接调用 getExecutionEnvironment 方法。它会根据当前运行的上下文 直接得到正确的结果;
    //此处的 env 是 StreamExecutionEnvironment 对象
    val env = StreamExecutionEnvironment.getExecutionEnvironment
  2. createLocalEnvironment
    这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果 不传入,则默认并行度就是本地的 CPU 核心数。
    //此处的 localEnvironment 是 StreamExecutionEnvironment 对象
    val localEnvironment = StreamExecutionEnvironment.createLocalEnvironment()
    
  3. createRemoteEnvironment
    这个方法返回集群执行环境。需要在调用时指定 JobManager 的主机名和端口号,并指定 要在集群中运行的 Jar 包。

    //此处的 remoteEnv 是 StreamExecutionEnvironment 对象
    val remoteEnv = StreamExecutionEnvironment.createRemoteEnvironment("host", // JobManager 主机名1234, // JobManager 进程端口号"path/to/jarFile.jar" // 提交给 JobManager 的 JAR 包
    )
    

2. 执行模式

而从 1.12.0 版本起,Flink 实现了 API 上的流批统一。DataStream API 新增了一个重要特 性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段 Flink 程序 在流处理和批处理之间切换。这样一来,DataSet API 也就没有存在的必要了。

  • 流执行模式(STREAMING) 这是 DataStream API 最经典的模式,一般用于需要持续实时处理的无界数据流。默认情 况下,程序使用的就是 STREAMING 执行模式。
  • 批执行模式(BATCH) 专门用于批处理的执行模式, 这种模式下,Flink 处理作业的方式类似于 MapReduce 框架。 对于不会持续计算的有界数据,我们用这种模式处理会更方便。
  • 自动模式(AUTOMATIC) 在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式

由于 Flink 程序默认是 STREAMING 模式,我们这里重点介绍一下 BATCH 模式的配置。 主要有两种方式:

(1)通过命令行配置

bin/flink run -Dexecution.runtime-mode=BATCH ...

在提交作业时,增加 execution.runtime-mode 参数,指定值为 BATCH。

(2)通过代码配置

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.BATCH)

3. 触发程序执行

我们需要显式地调用执行环境的 execute()方法,来触发程序执行。execute()方法将一直等 待作业完成,然后返回一个执行结果(JobExecutionResult)。

env.execute()

二、源算子(source)

Source源算子(基础篇二)

三、转换算子(Transformation)

持续更新中

四、输出算子(sink)

持续更新中

这篇关于大数据学习之Flink算子、了解DataStream API(基础篇一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639467

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll