YOLO-----关于正负样本、Loss、IOU、怎样去平衡正负样本的问题?

2024-01-24 09:59

本文主要是介绍YOLO-----关于正负样本、Loss、IOU、怎样去平衡正负样本的问题?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于正负样本、Loss、IOU、怎样去平衡正负样本的问题

  • 1、关于正负样本
  • 2、Loss计算
  • 3、IOU、GIOU、DIOU、CIOU
  • 4、怎样去平衡正负样本的问题?

先整理一下anchor的概念
常用的anchor定义

----Faster R-CNN 定义三组纵横比ratio = [0.5,1,2]和三种尺度scale = [8,16,32],可以组合处9种不同的形状和大小的边框。
----YOLO则不是使用预设的纵横比和尺度的组合,而是使用k-means聚类的方法,从训练集中学习得到不同的Anchor

yolov3中输入图片大小为416 × 416 × 3,分别经过32倍、16倍、8倍下采样,得到三层特征图,13 × 13 × 255、 26 × 26 × 255、 52 ×52 × 255。

每张特征图上会提前设定3个anchor box。即yolov3中一共9个anchor box
13 ×13的特征图感受野最大,使用大的anchor(116x90),(156x198),(373x326),
26 × 26特征图使用中等的anchor box (30x61),(62x45),(59x119),适合检测中等大小的目标。
52 × 52特征图感受野最小,使用最小的anchor box(10x13),(16x30),(33x23),适合检测较小的目标。

这些anchor的大小是对于原图像(416× 416)来说的。Anchor的作用是来回归出预测框,当我们标记的ground truth 与anchor 相交时,挑选出IOU最大值所对应的anchor,用这个anchor来回归预测框。

1、关于正负样本

loss计算中,“负责预测目标”(即正样本)和背景(即负样本),以及不参与计算loss的部分是怎么选择的:
正样本的选择:
如果Ground Truth的中心点落在一个区域中,该区域就负责检测该物体。然后计算这个grid的9个先验框(anchor)和目标真实位置的IOU值(直接计算,不考虑二者的中心位置),取IOU值最大的先验框和目标匹配。
于是,找到的该grid(网格)中的该anchor负责预测这个目标,其余的网格、anchor都不负责。将与该物体有最大IoU的预测框作为正样本(注意这里没有用到ignore thresh,即使该最大IoU<ignore thresh也不会影响该预测框为正样本)
负样本的选择:
YOLOv3中有一个参数是ignore_thresh,在ultralytics版版的YOLOv3中对应的是train.py文件中的iou_t参数(默认为0.225)。
如果一个预测框与所有的Ground Truth的最大IoU<ignore_thresh时,那这个预测框就是负样本**(再次提醒:即使该最大IoU<ignore thresh也不会影响该预测框为正样本)**

注意:不参与计算部分就是最大IOU没有超过阈值ignore_thresh的一部分
计算各个先验框和所有的目标ground truth之间的IOU,如果某先验框和图像中所有物体最大的IOU都小于阈值(一般0.5),那么就认为该先验框不含目标,记作负样本,其置信度应当为0

最大IOU没有超过阈值ignore_thresh的一部分虽然不负责预测对象,但IOU较大,可以认为包含了目标的一部分,不可简单当作负样本,所以这部分不参与误差计算。
在这里插入图片描述

2、Loss计算

在YOLOv3中,Loss分为三个部分:
1、一个是x、y、w、h部分带来的误差,也就是bbox带来的loss
2、一个是置信度带来的误差,也就是obj带来的loss
3、最后一个是类别带来的误差,也就是class带来的loss

在代码中分别对应lbox, lobj, lcls,yolov3中使用的loss公式如下:在这里插入图片描述
其中:
在这里插入图片描述
box loss:1–IOU/1-GIOU/1-DIOU/1-CIOU
cls loss:
在这里插入图片描述
obj:
在这里插入图片描述
关于BCE、MSE、Focal loss(类别cls)要整理一次。

在这里插入图片描述

3、IOU、GIOU、DIOU、CIOU

IOU:
对于检测框B和groundtruth G,IOU公式如下:
在这里插入图片描述
那么IoU Loss即为1-IoU。
显然IoU Loss具有非负性、尺度不变性、同一性、对称性、三角不等性等特点,所以可以用于bounding box的回归任务中。

但同时,IoU Loss也存在一个很致命的缺点:
当B与G的IoU为0时,Loss也为0,网络无法进行训练。因此IoU loss在回归任务中的表现并不好。
IOU实现代码:

import numpy as np
def Iou(box1, box2, wh=False):if wh == False:xmin1, ymin1, xmax1, ymax1 = box1xmin2, ymin2, xmax2, ymax2 = box2else:xmin1, ymin1 = int(box1[0]-box1[2]/2.0), int(box1[1]-box1[3]/2.0)xmax1, ymax1 = int(box1[0]+box1[2]/2.0), int(box1[1]+box1[3]/2.0)xmin2, ymin2 = int(box2[0]-box2[2]/2.0), int(box2[1]-box2[3]/2.0)xmax2, ymax2 = int(box2[0]+box2[2]/2.0), int(box2[1]+box2[3]/2.0)# 获取矩形框交集对应的左上角和右下角的坐标(intersection)xx1 = np.max([xmin1, xmin2])yy1 = np.max([ymin1, ymin2])xx2 = np.min([xmax1, xmax2])yy2 = np.min([ymax1, ymax2])	# 计算两个矩形框面积area1 = (xmax1-xmin1) * (ymax1-ymin1) area2 = (xmax2-xmin2) * (ymax2-ymin2)inter_area = (np.max([0, xx2-xx1])) * (np.max([0, yy2-yy1])) #计算交集面积iou = inter_area / (area1+area2-inter_area+1e-6)  #计算交并比return iou

2. 作为损失函数会出现的问题(缺点)

如果两个框没有相交,根据定义,IoU=0,不能反映两者的距离大小(重合度)。同时因为loss=0,没有梯度回传,无法进行学习训练。
IoU无法精确的反映两者的重合度大小。如下图所示,三种情况IoU都相等,但看得出来他们的重合度是不一样的,左边的图回归的效果最好,右边的最差。
在这里插入图片描述
GIOU:
由于IoU是比值的概念,对目标物体的scale是不敏感的。然而检测任务中的BBox的回归损失(MSE loss, l1-smooth loss等)优化和IoU优化不是完全等价的,而且 Ln 范数对物体的scale也比较敏感,IoU无法直接优化没有重叠的部分
在这里插入图片描述
上面公式的意思是:先计算两个框的最小闭包区域面积 [公式] (通俗理解:同时包含了预测框和真实框的最小框的面积),再计算出IoU,再计算闭包区域中不属于两个框的区域占闭包区域的比重,最后用IoU减去这个比重得到GIoU。
box loss = 1 -GIOUS
特性
1、*与IoU相似,GIoU也是一种距离度量,作为损失函数的话, [公式] ,满足损失函数的基本要求
2、GIoU对scale不敏感
3、*GIoU是IoU的下界,在两个框无限重合的情况下,IoU=GIoU=1
4、*IoU取值[0,1],但GIoU有对称区间,取值范围[-1,1]。在两者重合的时候取最大值1,在两者无交集且无限远的时候取最小值-1,因此GIoU是一个非常好的距离度量指标。与IoU只关注重叠区域不同,GIoU不仅关注重叠区域,还关注其他的非重合区域,能更好的反映两者的重合度。
实现代码:

def Giou(rec1,rec2):#分别是第一个矩形左右上下的坐标x1,x2,y1,y2 = rec1 x3,x4,y3,y4 = rec2iou = Iou(rec1,rec2)area_C = (max(x1,x2,x3,x4)-min(x1,x2,x3,x4))*(max(y1,y2,y3,y4)-min(y1,y2,y3,y4))area_1 = (x2-x1)*(y1-y2)area_2 = (x4-x3)*(y3-y4)sum_area = area_1 + area_2w1 = x2 - x1   #第一个矩形的宽w2 = x4 - x3   #第二个矩形的宽h1 = y1 - y2h2 = y3 - y4W = min(x1,x2,x3,x4)+w1+w2-max(x1,x2,x3,x4)    #交叉部分的宽H = min(y1,y2,y3,y4)+h1+h2-max(y1,y2,y3,y4)    #交叉部分的高Area = W*H    #交叉的面积add_area = sum_area - Area    #两矩形并集的面积end_area = (area_C - add_area)/area_C    #闭包区域中不属于两个框的区域占闭包区域的比重giou = iou - end_areareturn giou

DIOU:
1、来源
DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。
在这里插入图片描述
基于IoU和GIoU存在的问题,作者提出了两个问题:
1、 直接最小化anchor框与目标框之间的归一化距离是否可行,以达到更快的收敛速度?
2、如何使回归在与目标框有重叠甚至包含时更准确、更快?
[公式]
分子是预测框和真实框的中心点的欧氏距离, 分母是包含预测框和真实框的最小区域的对角线距离。
DIoU中对anchor框和目标框之间的归一化距离进行了建模
2、优点
预测框和真实框的重叠程度。并且考虑到预测框长和宽的比值问题并以此添加惩罚项,从而使预测框的效果更加稳定
实现代码:

def Diou(bboxes1, bboxes2):rows = bboxes1.shape[0]cols = bboxes2.shape[0]dious = torch.zeros((rows, cols))if rows * cols == 0:#return diousexchange = Falseif bboxes1.shape[0] > bboxes2.shape[0]:bboxes1, bboxes2 = bboxes2, bboxes1dious = torch.zeros((cols, rows))exchange = True# #xmin,ymin,xmax,ymax->[:,0],[:,1],[:,2],[:,3]w1 = bboxes1[:, 2] - bboxes1[:, 0]h1 = bboxes1[:, 3] - bboxes1[:, 1] w2 = bboxes2[:, 2] - bboxes2[:, 0]h2 = bboxes2[:, 3] - bboxes2[:, 1]area1 = w1 * h1area2 = w2 * h2center_x1 = (bboxes1[:, 2] + bboxes1[:, 0]) / 2 center_y1 = (bboxes1[:, 3] + bboxes1[:, 1]) / 2 center_x2 = (bboxes2[:, 2] + bboxes2[:, 0]) / 2center_y2 = (bboxes2[:, 3] + bboxes2[:, 1]) / 2inter_max_xy = torch.min(bboxes1[:, 2:],bboxes2[:, 2:]) inter_min_xy = torch.max(bboxes1[:, :2],bboxes2[:, :2]) out_max_xy = torch.max(bboxes1[:, 2:],bboxes2[:, 2:]) out_min_xy = torch.min(bboxes1[:, :2],bboxes2[:, :2])inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)inter_area = inter[:, 0] * inter[:, 1]inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2outer = torch.clamp((out_max_xy - out_min_xy), min=0)outer_diag = (outer[:, 0] ** 2) + (outer[:, 1] ** 2)union = area1+area2-inter_areadious = inter_area / union - (inter_diag) / outer_diagdious = torch.clamp(dious,min=-1.0,max = 1.0)if exchange:dious = dious.Treturn dious

CIOU:
在这里插入图片描述
实现代码:

def bbox_overlaps_ciou(bboxes1, bboxes2):rows = bboxes1.shape[0]cols = bboxes2.shape[0]cious = torch.zeros((rows, cols))if rows * cols == 0:return ciousexchange = Falseif bboxes1.shape[0] > bboxes2.shape[0]:bboxes1, bboxes2 = bboxes2, bboxes1cious = torch.zeros((cols, rows))exchange = Truew1 = bboxes1[:, 2] - bboxes1[:, 0]h1 = bboxes1[:, 3] - bboxes1[:, 1]w2 = bboxes2[:, 2] - bboxes2[:, 0]h2 = bboxes2[:, 3] - bboxes2[:, 1]area1 = w1 * h1area2 = w2 * h2center_x1 = (bboxes1[:, 2] + bboxes1[:, 0]) / 2center_y1 = (bboxes1[:, 3] + bboxes1[:, 1]) / 2center_x2 = (bboxes2[:, 2] + bboxes2[:, 0]) / 2center_y2 = (bboxes2[:, 3] + bboxes2[:, 1]) / 2inter_max_xy = torch.min(bboxes1[:, 2:],bboxes2[:, 2:])inter_min_xy = torch.max(bboxes1[:, :2],bboxes2[:, :2])out_max_xy = torch.max(bboxes1[:, 2:],bboxes2[:, 2:])out_min_xy = torch.min(bboxes1[:, :2],bboxes2[:, :2])inter = torch.clamp((inter_max_xy - inter_min_xy), min=0)inter_area = inter[:, 0] * inter[:, 1]inter_diag = (center_x2 - center_x1)**2 + (center_y2 - center_y1)**2outer = torch.clamp((out_max_xy - out_min_xy), min=0)outer_diag = (outer[:, 0] ** 2) + (outer[:, 1] ** 2)union = area1+area2-inter_areau = (inter_diag) / outer_diagiou = inter_area / unionwith torch.no_grad():arctan = torch.atan(w2 / h2) - torch.atan(w1 / h1)v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(w2 / h2) - torch.atan(w1 / h1)), 2)S = 1 - ioualpha = v / (S + v)w_temp = 2 * w1ar = (8 / (math.pi ** 2)) * arctan * ((w1 - w_temp) * h1)cious = iou - (u + alpha * ar)cious = torch.clamp(cious,min=-1.0,max = 1.0)if exchange:cious = cious.Treturn cious

4、怎样去平衡正负样本的问题?

可参考链接:
https://blog.csdn.net/qq_14845119/article/details/78930091.
https://www.cnblogs.com/wmx24/p/9676120.html.
https://zhuanlan.zhihu.com/p/30252501.

大概几种解决方案  
1.调整训练集的正负样本比例,
2. 过采样
对训练集里面样本数量较少的类别(少数类)进行过采样,合成新的样本来缓解类不平衡。
一种经典的过采样算法:SMOTE。
3. 欠采样
对训练集里面样本数量较多的类别(多数类)进行欠采样,抛弃一些样本来缓解类不平衡。
4.focal loss等等

博客参考:
感谢!
https://www.cnblogs.com/pprp/p/12590801.html.
https://www.cnblogs.com/pprp/p/12590801.html.
https://zhuanlan.zhihu.com/p/94799295.
https://blog.csdn.net/weixin_46269983/article/details/107637613.

这篇关于YOLO-----关于正负样本、Loss、IOU、怎样去平衡正负样本的问题?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639333

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C