Datawhale 零基础入门CV-Task02.数据读取与数据扩增

2024-01-24 09:08

本文主要是介绍Datawhale 零基础入门CV-Task02.数据读取与数据扩增,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要内容

  • 数据读取
  • 数据扩增方法
  • Pytorch读取赛题数据

学习目标

  • 学会PythonPytorch中图像读取
  • 学会扩增方法和Pytorch读取赛题数据

图像读取

  • 由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此需要完成对数据的读取操作,在Python中有很多库可以完成数据读取的操作,比较常见的有PillowOpenCV
Pillow
  • PillowPython图像处理函数库PIL的一个分支,Pillow提供了常见的图像读取和处理的操作,而且可以与ipython notebook无缝集成,是应用比较广泛的库
    在这里插入图片描述
  • 实现
from PIL import Image,ImageFilter 
im = Image.open(r"D:\input\mchar_train\timg.JFIF")
plt.imshow(im)

在这里插入图片描述

  • 应用模糊滤镜
    在这里插入图片描述
  • 首先可以利用系统自带的画图工具转为jpg格式
  • 实现应用模糊滤镜
from PIL import Image,ImageFilter,ImageFilter 
im = Image.open(r"D:\input\mchar_train\timg.jpg")
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg','jpeg')
plt.imshow(im2)

在这里插入图片描述

  • 图片放缩
    在这里插入图片描述
    Pillow官方文档
OpenCV
  • OpenCV是一个跨平台的计算机视觉库,最早由Intel开源得来,拥有众多的计算机视觉、数字图像处理和机器视觉等功能。OpenCV在功能上比Pillow更强大
    在这里插入图片描述
  • 实现
# 库在前面已经导入过了
import cv2
img = cv2.imread(r"D:\input\mchar_train\mchar_train\000000.png")
img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
plt.imshow(img)

在这里插入图片描述
OpenCV官网
OpenCV扩展算法库

数据扩增方法

  • 在赛题中需要对图像进行字符识别,因此需要完成数据的读取操作同时也需要完成数据扩增操作

数据扩增介绍

  • 数据扩增可以增加训练集的样本,同时可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力
    在这里插入图片描述
  • 数据扩增的作用:数据扩增可以扩展样本空间

数据扩增方法

  • 从颜色空间、尺度空间到样本空间,同时根据不同任务数据扩增都有相应的区别
  • 对于图像分类,数据扩增一般不会改变标签:对于物体检测、数据扩增会改变物体坐标位置;对于图像分割,数据扩增会改变像素标签
    常见的数据扩增方法
  • 在常见的数据扩增方法中,一般会从图像颜色、尺寸、形态、空间和像素等角度进行变换。不同的数据扩增方法可以自由进行组合,得到更丰富的数据扩增方法,下面给出以torchvision为例,常见的数据扩增方法

transforms.CenterCrop:对图片中心进行裁剪
thansforms.ColorJitter:对图像颜色的对比度、饱和度和零度进行变换
transforms.FiveCrop:对图像四个角和中心进行剪裁得到五分图像
transforms.Grayscale:对图像进行灰度变换
transforms.Pad:使用固定值进行像素填充
transforms.RandomAffine:随机仿射变换
transforms.RandomCrop:随机区域裁剪
transforms.RandomHorizontalFlip:随机水平翻转
transforms.RandomRotation:随即旋转
transforms.RandomVerticalFilp:随机垂直翻转

在这里插入图片描述

  • 对于图像中的字符进行识别,不能进行翻转操作,翻转后可能改变字符原本的含义

常用的数据扩增库

  • torchvisionpytorch官方提供的数据扩增库,提供了基本的数据扩增方法,可以与torch进行集成,但数据扩增方法种类较少,速度中等

github

  • imagaug:常用的第三方数据扩增库,提供了多样的数据扩增方法,组合起来比较方便,速度较快

github

  • albumentations:常用的第三方数据扩增库,提供了多样的数据扩增方法,对图像分类、语义分割,物体检测和关键点检测都支持,速度较快

使用文档

Pytorch读取数据

  • Pytorch中数据是通过Dataset进行封装,并通过DataLoder进行并行读取,所以只需重载一下数据读取的逻辑就可以完成数据的读取
import os, sys, glob, shutil, json
import cv2
from PIL import Image
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transforms
class SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)
train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open(r"D:\input\mchar_train.json"))
train_label = [train_json[x]['label'] for x in train_json]data = SVHNDataset(train_path, train_label,transforms.Compose([# 缩放到固定尺⼨transforms.Resize((64, 128)),# 随机颜⾊变换transforms.ColorJitter(0.2, 0.2, 0.2),# 加⼊随机旋转transforms.RandomRotation(5),# 将图⽚转换为pytorch 的tesntortransforms.ToTensor(),# 对图像像素进⾏归⼀化transforms.Normalize([0.485,0.456,0.406],[0.229,0.224,0.225])]))

在这里插入图片描述

  • Dataset:对数据集的封装,提供索引方式的对数据样本进行读取
  • DataLoder:对Dataset进行封装,提供批量读取的迭代读取
  • 加入DataLoder后,数据读取代码改写如下
import os, sys, glob, shutil, json
import cv2from PIL import Image
import numpy as npimport torch
from torch.utils.data.dataset import Dataset
import torchvision.transforms as transformsclass SVHNDataset(Dataset):def __init__(self, img_path, img_label, transform=None):self.img_path = img_pathself.img_label = img_labelif transform is not None:self.transform = transformelse:self.transform = Nonedef __getitem__(self, index):img = Image.open(self.img_path[index]).convert('RGB')if self.transform is not None:img = self.transform(img)# 原始SVHN中类别10为数字0lbl = np.array(self.img_label[index], dtype=np.int)lbl = list(lbl) + (5 - len(lbl)) * [10]return img, torch.from_numpy(np.array(lbl[:5]))def __len__(self):return len(self.img_path)train_path = glob.glob('../input/train/*.png')
train_path.sort()
train_json = json.load(open('../input/train.json'))
train_label = [train_json[x]['label'] for x in train_json]train_loader = torch.utils.data.DataLoader(SVHNDataset(train_path, train_label,transforms.Compose([transforms.Resize((64, 128)),transforms.ColorJitter(0.3, 0.3, 0.2),transforms.RandomRotation(5),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])),batch_size=10, # 每批样本个数shuffle=False, # 是否打乱顺序num_workers=10, # 读取的线程个数
)for data in train_loader:break
  • 加入DataLoder后,数据按照批次获取,每批次调用Dataset读取单个样本进行拼接,此时data的格式为:
torch.Size([10, 3, 64, 128]), torch.Size([10, 6])
  • 前者为图像文件,为batchsize * chanel * height * width次序;后者为字符标签

本章小结

  • 对数据读取进行详细了解,学会常见的数据扩增方法和使用,最后使用Pytorch框架对赛题的数据进行读取

这篇关于Datawhale 零基础入门CV-Task02.数据读取与数据扩增的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639192

相关文章

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑

在Mysql环境下对数据进行增删改查的操作方法

《在Mysql环境下对数据进行增删改查的操作方法》本文介绍了在MySQL环境下对数据进行增删改查的基本操作,包括插入数据、修改数据、删除数据、数据查询(基本查询、连接查询、聚合函数查询、子查询)等,并... 目录一、插入数据:二、修改数据:三、删除数据:1、delete from 表名;2、truncate

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下