Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力

本文主要是介绍Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.点积注意力机制简介

        点积注意力机制(Dot-Product Attention)是一种常用的注意力机制之一,通常与Seq2Seq模型中的自注意力(Self-Attention)机制一起使用。它用于计算查询(Query)和键(Key)之间的相关性,并利用相关性来加权求和值(Value)。

点积注意力机制可以分为三个主要步骤:

1.1查询、键和值的线性变换

        在这一步骤中,我们首先对查询向量Q、键向量K和值向量V进行线性变换,将其投射到低维空间以进行计算。变换后的查询向量记作Q',变换后的键向量记作K',变换后的值向量记作V'。

1.2计算注意力权重

        在这一步骤中,我们计算查询向量Q'与每个键向量K'之间的相关性得分,通过计算点积(内积)来衡量它们之间的相似度。利用softmax函数,我们可以将这些得分归一化为注意力权重,确保它们总和为1。计算得到的注意力权重与值向量V'相乘,就得到了加权求和后的上下文向量。

1.3上下文向量的计算

        最后一步,我们将注意力权重与值向量V'进行加权求和,得到最终的上下文向量。这个上下文向量将包含与查询向量Q'最相关的信息,用于后续的任务。

        点积注意力机制的优势在于计算简单高效,因为向量的点积运算具有并行计算的特点,适合在大规模计算中使用。另外,点积注意力还可以更好地保留输入的整体结构信息,因为它直接通过点积来度量查询和键之间的关联性。

        需要注意的是,点积注意力机制在一些情况下可能会存在缩放问题。为了解决这个问题,可以通过对点积结果进行缩放操作,常用的缩放因子为1 / 根号d_k,其中d_k表示查询和键的维度。这样能够减小点积结果的大小,避免梯度消失或爆炸的问题。

下图是transformer中的自注意力机制:

2.点积注意力机制代码实现

2.1创建两个张量

import torch # 导入 torch
import torch.nn.functional as F # 导入 nn.functional
# 1. 创建两个张量 x1 和 x2
x1 = torch.randn(2, 3, 4) # 形状 (batch_size, seq_len1, feature_dim)
x2 = torch.randn(2, 5, 4) # 形状 (batch_size, seq_len2, feature_dim)print("x1:", x1)
print("x2:", x2)

2.2计算点积,得到原始权重,形状为 (batch_size, seq_len1, seq_len2)

# 计算点积,得到原始权重,形状为 (batch_size, seq_len1, seq_len2)
raw_weights = torch.bmm(x1, x2.transpose(1, 2))
print(" 原始权重:", raw_weights) 

2.3应用 softmax 函数,使权重的值在0和1之间,且每一行的和为1

import torch.nn.functional as F # 导入 torch.nn.functional
# 应用 softmax 函数,使权重的值在 0 和 1 之间,且每一行的和为 1
attn_weights = F.softmax(raw_weights, dim=-1) # 归一化
print(" 归一化后的注意力权重:", attn_weights)

2.4与 x2 相乘,得到注意力分布的加权和,形状为 (batch_size, seq_len1, feature_dim)

# 与 x2 相乘,得到注意力分布的加权和,形状为 (batch_size, seq_len1, feature_dim)
attn_output = torch.bmm(attn_weights, x2)
print(" 注意力输出 :", attn_output)

 

2.5总结

        点积注意力机制是一种常用的注意力机制,用于计算查询和键之间的相关性,并利用相关性进行加权求和操作。它具有计算简单高效的优势,适合处理大规模计算,并可以更好地保留输入的整体结构信息。

 

这篇关于Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637945

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio