Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力

本文主要是介绍Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.点积注意力机制简介

        点积注意力机制(Dot-Product Attention)是一种常用的注意力机制之一,通常与Seq2Seq模型中的自注意力(Self-Attention)机制一起使用。它用于计算查询(Query)和键(Key)之间的相关性,并利用相关性来加权求和值(Value)。

点积注意力机制可以分为三个主要步骤:

1.1查询、键和值的线性变换

        在这一步骤中,我们首先对查询向量Q、键向量K和值向量V进行线性变换,将其投射到低维空间以进行计算。变换后的查询向量记作Q',变换后的键向量记作K',变换后的值向量记作V'。

1.2计算注意力权重

        在这一步骤中,我们计算查询向量Q'与每个键向量K'之间的相关性得分,通过计算点积(内积)来衡量它们之间的相似度。利用softmax函数,我们可以将这些得分归一化为注意力权重,确保它们总和为1。计算得到的注意力权重与值向量V'相乘,就得到了加权求和后的上下文向量。

1.3上下文向量的计算

        最后一步,我们将注意力权重与值向量V'进行加权求和,得到最终的上下文向量。这个上下文向量将包含与查询向量Q'最相关的信息,用于后续的任务。

        点积注意力机制的优势在于计算简单高效,因为向量的点积运算具有并行计算的特点,适合在大规模计算中使用。另外,点积注意力还可以更好地保留输入的整体结构信息,因为它直接通过点积来度量查询和键之间的关联性。

        需要注意的是,点积注意力机制在一些情况下可能会存在缩放问题。为了解决这个问题,可以通过对点积结果进行缩放操作,常用的缩放因子为1 / 根号d_k,其中d_k表示查询和键的维度。这样能够减小点积结果的大小,避免梯度消失或爆炸的问题。

下图是transformer中的自注意力机制:

2.点积注意力机制代码实现

2.1创建两个张量

import torch # 导入 torch
import torch.nn.functional as F # 导入 nn.functional
# 1. 创建两个张量 x1 和 x2
x1 = torch.randn(2, 3, 4) # 形状 (batch_size, seq_len1, feature_dim)
x2 = torch.randn(2, 5, 4) # 形状 (batch_size, seq_len2, feature_dim)print("x1:", x1)
print("x2:", x2)

2.2计算点积,得到原始权重,形状为 (batch_size, seq_len1, seq_len2)

# 计算点积,得到原始权重,形状为 (batch_size, seq_len1, seq_len2)
raw_weights = torch.bmm(x1, x2.transpose(1, 2))
print(" 原始权重:", raw_weights) 

2.3应用 softmax 函数,使权重的值在0和1之间,且每一行的和为1

import torch.nn.functional as F # 导入 torch.nn.functional
# 应用 softmax 函数,使权重的值在 0 和 1 之间,且每一行的和为 1
attn_weights = F.softmax(raw_weights, dim=-1) # 归一化
print(" 归一化后的注意力权重:", attn_weights)

2.4与 x2 相乘,得到注意力分布的加权和,形状为 (batch_size, seq_len1, feature_dim)

# 与 x2 相乘,得到注意力分布的加权和,形状为 (batch_size, seq_len1, feature_dim)
attn_output = torch.bmm(attn_weights, x2)
print(" 注意力输出 :", attn_output)

 

2.5总结

        点积注意力机制是一种常用的注意力机制,用于计算查询和键之间的相关性,并利用相关性进行加权求和操作。它具有计算简单高效的优势,适合处理大规模计算,并可以更好地保留输入的整体结构信息。

 

这篇关于Python 什么是点积注意力机制;点击注意力机制代码实现;Dot-Product Attention代码实战;超详细代码实现点积注意力的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637945

相关文章

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

python中列表list切分的实现

《python中列表list切分的实现》列表是Python中最常用的数据结构之一,经常需要对列表进行切分操作,本文主要介绍了python中列表list切分的实现,文中通过示例代码介绍的非常详细,对大家... 目录一、列表切片的基本用法1.1 基本切片操作1.2 切片的负索引1.3 切片的省略二、列表切分的高

基于Python实现一个PDF特殊字体提取工具

《基于Python实现一个PDF特殊字体提取工具》在PDF文档处理场景中,我们常常需要针对特定格式的文本内容进行提取分析,本文介绍的PDF特殊字体提取器是一款基于Python开发的桌面应用程序感兴趣的... 目录一、应用背景与功能概述二、技术架构与核心组件2.1 技术选型2.2 系统架构三、核心功能实现解析

Flutter监听当前页面可见与隐藏状态的代码详解

《Flutter监听当前页面可见与隐藏状态的代码详解》文章介绍了如何在Flutter中使用路由观察者来监听应用进入前台或后台状态以及页面的显示和隐藏,并通过代码示例讲解的非常详细,需要的朋友可以参考下... flutter 可以监听 app 进入前台还是后台状态,也可以监听当http://www.cppcn

通过Python脚本批量复制并规范命名视频文件

《通过Python脚本批量复制并规范命名视频文件》本文介绍了如何通过Python脚本批量复制并规范命名视频文件,实现自动补齐数字编号、保留原始文件、智能识别有效文件等功能,听过代码示例介绍的非常详细,... 目录一、问题场景:杂乱的视频文件名二、完整解决方案三、关键技术解析1. 智能路径处理2. 精准文件名

基于Python开发PDF转Doc格式小程序

《基于Python开发PDF转Doc格式小程序》这篇文章主要为大家详细介绍了如何基于Python开发PDF转Doc格式小程序,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 用python实现PDF转Doc格式小程序以下是一个使用Python实现PDF转DOC格式的GUI程序,采用T

Python使用PIL库将PNG图片转换为ICO图标的示例代码

《Python使用PIL库将PNG图片转换为ICO图标的示例代码》在软件开发和网站设计中,ICO图标是一种常用的图像格式,特别适用于应用程序图标、网页收藏夹图标等场景,本文将介绍如何使用Python的... 目录引言准备工作代码解析实践操作结果展示结语引言在软件开发和网站设计中,ICO图标是一种常用的图像

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2