Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress

本文主要是介绍Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

细胞合成代谢的关键物质

细胞内合成代谢不足 (表征为细胞内 ATP 和 NADPH 缺乏) 是参与体内许多病理过程的关键因素。细胞内物质的合成代谢需要消耗足够的 ATP,并依赖 NADPH (还原型辅酶 Ⅱ) 为合成代谢提供还原能量的关键电子供体。

三羧酸 (TCA) 循环是大多数哺乳动物细胞中产生 ATP 的主要能量代谢过程。然而,针对 TCA 循环的干预措施并不能纠正病理条件下 ATP 供应失调的情况。TCA 循环涉及各种代谢网络,仅通过递送特定因子以改变其固有途径可能会导致细胞死亡,并且,直接提供外源性 ATP 对细胞代谢影响不大。

NADPH 可以为合成反应和氧化还原平衡提供还原力。细胞 NADPH 水平通过多种代谢途径 (磷酸戊糖途径、脂肪酸氧化和谷氨酰胺代谢) 的产生和利用来调节。然而,直接干预这些途径可能导致细胞代谢失衡,不可控的 NADPH 供应会导致超氧化物的产生,从而又造成氧化应激。此外,NADPH 也很昂贵。

简言之,在病理条件下,很难将不足的 ATP 和 NADPH 水平增加至最佳浓度。因此,构建一个可控并且独立的 ATP 和 NADPH 自我供应系统,对增强细胞合成代谢来说尤为重要。

基于 NTUs 的植物源天然光合系统

今年 12 月 7 日,Nature 在线发表了名为 “A plant-derived natural photosynthetic system for improving cell anabolism” 的研究性论文。该研究开发了一种独立且可控的、基于纳米类囊体单元 (NTUs) 的植物源天然光合系统。将NTUs 用软骨细胞膜 (CM) 包装后递送入软骨细胞内,CM-NTUs 在暴露于光后原位增加细胞内 ATP 和 NADPH 水平,并改善退化软骨细胞的合成代谢。它们还可以系统地纠正能量失衡,改善了小鼠软骨稳态并防止骨关节炎的病理进展。该天然光合系统成功实现了跨物种应用,能有效增强哺乳动物细胞的合成代谢功能,并在治疗退行性疾病方面表现出良好的临床潜力。

NTUs 生产 ATP 和 NADPH

作者团队首先对 NTUs 进行分析。蛋白质组学结果显示,NTUs 保留了类囊体膜表面光合作用所需的所有蛋白质组分 (图 1a)。基因本体 (GO) 细胞组分分析表明,NTUs 能在光照后催化 ADP 产生ATP,并催化依赖于光的 NADP+ 还原为 NADPH (图 1b)。为验证上述结果,作者测量了分离的 NTUs 中 D1 和 D2 蛋白随时间推移的丰度变化。如图 1c 所示,D1 和 D2 蛋白,在光照下 (8-16 小时内) 完全降解,在黑暗条件下 (5-7 天内) 几乎完全降解。

小贴士:D1 和 D2 蛋白是植物光合作用重要复合体 PSII 的核心亚基蛋白,能够进行光合作用。

随后测量了 NTUs 的 ATP 生产能力随时间的变化。结果表明,NTUs 产生 ATP 的能力在光照 16 小时后或在黑暗中储存 7 天后显著下降 (图 1d-e)。简言之,在光照和黑暗条件下 NTUs 产生 ATP 能力的变化与蛋白质降解变化水平一致

图 1. NTUs 的表征

a. NTUs 中光合作用光反应相关蛋白质和光合作用电子传递链的示意图。FD: 铁氧还蛋白;PC: 质体蓝素;PSI: 光系统I;PSII: 光系统II;PQ: 质体醌。b. NTUs 体外生产ATP和NADPH 的能力。c. 在光照 0-32 小时 (光强度 80 µmol·m-2·s-1) 或黑暗 0-7 天 (室温) 条件下,NTUs 中 D1 和 D2 的丰度。d-e. 测定 NTUs 的ATP产量 (d) 在光照下 (光强度 80 µmol·m-2·s-1) 0-32小时; (e) 黑暗 0-7 天 (室温)。

如何跨物种应用 NTUs?

NTUs 虽能生产 ATP 和 NADPH,但如何有效避免哺乳动物细胞的体内清除和免疫排斥呢?作者认为使用特定的成熟细胞膜作为伪装,可能是将光合系统植入并逃避跨物种清除的有效策略。

因此,该研究使用软骨细胞膜 (chondrocyte membrane, CM) 来封装 NTUs,以制备 CM-NTUs。结果表明,这些 CM-NTUs 可通过膜融合进入软骨细胞,避免溶酶体降解并实现快速渗透 (图 2)

小贴士:骨关节炎 (Osteoarthritis) 是一种常见的退行性疾病,由于软骨细胞的能量代谢失衡导致关节软骨破坏。病理性软骨细胞表现出 ATP 和 NADPH 耗竭,以及活性氧 (ROS) 和细胞外基质 (ECM) 降解相关蛋白的产生增加。目前骨关节炎的生物治疗还无法系统性地纠正损伤退变软骨细胞的代谢失衡。

图 2. 包膜纳米类囊体单位 (CM-NTUs) 示意图

CM-NTUs 可改善细胞的合成代谢

  • CM-NTUs 的使用优化

作者首先在不同的光照条件下,将 IL-1β 处理 (诱导小鼠软骨细胞的代谢障碍) 的软骨细胞与 CM-NTUs 共孵育,以跟踪细胞 ATP 和 NADPH 随时间的变化。然后,调整光强度、光照时间和 CM-NTUs 中封装的铁氧还蛋白 (FDX) 浓度,以优化实验条件。结果显示,暴露于红光 (80 µmol·m-2·s-1) 照射 30 分钟并具有 25 µM FDX (递送至细胞后稀释至约 1.2 µM) 的 CM-NTUs,是佳实验条件,并将其用于后续实验。在这些条件下,CM-NTUs 恢复了细胞内 ATP 和 NADPH 水平,接近对照软骨细胞中的水平 (图 3a-c)

小贴士:铁氧还蛋白作为一种常见的电子载体,参与呼吸作用、光合作用、发酵等重要代谢过程。

图 3. CM-NTUs 在不同条件下恢复软骨细胞内的 ATP、NADPH 水平

a, 用 CM-NTUs 和红光照射 (80 µmol·m-2·s-1) 处理不同时间的软骨细胞 ATP 水平。b. 在不同光强度下,用 CM-NTUs 和红光照射处理 30 min 的软骨细胞 ATP 水平。c. 用具有不同包封铁氧还蛋白 (FDX) 浓度的 CM-NTUs 处理的软骨细胞的 NADPH 水平。

  • NTUs 的使用寿命

通过测量光照和非光照细胞中 ATP 和 NADPH 水平随时间的变化,以阐明细胞中 NTUs 的功能寿命 (图 4)

受光照的细胞中,ATP 和 NADPH 水平逐渐增加,在 1-2 小时达到峰值,然后由于细胞内 ADP 和 NADP+ 库的耗尽而达到稳定水平。8 h 后,ATP 和 NADPH 水平开始下降。到 32 小时,ATP 和 NADPH 水平与在非光照细胞中观察到的相似。在非光照细胞中,CM-NTUs 对细胞 ATP 水平没有影响

小贴士:NADP+ 和 ADP 在光反应中可被还原成 NADPH 和 ATP。

研究结果还表明,由光合系统产生的 ROS 并没有增加细胞内 ROS 总水平。此外,在含有 NTU 并经光照的退行性软骨细胞中,细胞内 ROS 水平下降

图 4. 用 CM-NTU 培养的细胞 (有/无光照) 中 ATP (a) 和 NADPH (b) 水平随时间的变化

  • NTUs 对其他退行性疾病有效

为探索 NTUs 对其他退行性疾病的作用效果,该研究使用各种膜包覆的 NTU,并将其与相应的细胞 (肌肉卫星细胞、髓核细胞、人脐静脉内皮细胞) 进行培养。

结果显示,光照组 ATP 和 NADPH 的浓度分别比未光照组增加 3.17-3.78 和 1.37-1.40 倍 (图 5)。也即,光照后,上述细胞中的 ATP 和 NADPH 水平都得到增强。换言之,包裹成熟哺乳动物膜的 NTU 在暴露于光照后,能增强细胞的合成代谢功能 (不局限于软骨细胞)

图 5. 包裹不同哺乳动物细胞膜的 NTUs 在相应的细胞中的所产生的 ATP (a, c, e) 和 NADPH (b, d, f) 水平。 肌肉卫星细胞 (SCs)、髓核细胞 (NPCs) 和人脐静脉内皮细胞 (HUVECs)。

综上所述, NTU 可通过自然光合系统,有效改善细胞的合成代谢功能。

CM-NTU 重新规划细胞合成代谢程序

为全面确定细胞代谢的变化,该研究对暴露在光线下的软骨细胞进行转录组学分析。作者比较了 IL-1β + CM-NTU 组和 IL-1β 组的基因表达模式。结果显示,IL-1β + CM-NTU 组表现出参与 TCA 循环和氧化磷酸化的基因表达上调,以及参与糖酵解和细胞外基质 (ECM) 降解的基因表达下调 (图 6a)。换言之,CM-NTU 重新驱动的代谢过程可系统地纠正退化软骨细胞中能量 (糖酵解、TCA 循环和氧化磷酸化) 和物质 (胶原蛋白和糖胺聚糖) 代谢的失衡 (图 6b)。小贴士:细胞外基质 (ECM) 主要由胶原蛋白和糖胺聚糖组成,骨关节炎时难以再生。

图 6. CM-NTU 重新规划细胞合成代谢程序

a. 雷达图显示了 IL-1β 组和 IL-1β + CM-NTU 组中糖酵解、TCA循环、氧化磷酸化、氨基糖代谢、甘氨酸和丝氨酸代谢以及精氨酸、鸟氨酸和脯氨酸代谢的途径富集分数。b. 退化软骨细胞中 CM-NTU 重驱动的代谢过程示意图。

CM-NTU 对骨关节炎小鼠模型有效

最后,该研究通过关节内注射 CM-NTUs 并进行光照,以评价其是否能抑制小鼠前交叉韧带横断 (ACLT) 手术诱导的骨关节炎的进展。结果显示,CM-NTUs 在光照后增加原位软骨细胞内的 ATP 和 NADPH 水平,从而使胶原蛋白 (Col II) 和聚集蛋白聚糖含量增加,并在术后 12 周,有效抑制了软骨下骨变形和骨赘的增生 (图 7)。简言之,CM-NTUs 可以促进软骨稳态,并防止动物骨关节炎的发生。

图 7. 骨关节炎小鼠模型注射 CM-NTUs 后的关节变化术后 12 周时,关节切片的免疫组织化学染色 (Col II 和聚集蛋白聚糖) 以及膝关节显微 CT 图像的矢状面图 (第 3 行) 和膝关节的三维图像 (第 4 行)。

总结

作者构建了一个完全自然的光合系统,可以基于光照独立促进细胞中 ATP 和 NADPH 的供应。最重要的是,该项研究利用膜包覆策略,证明了植物源性天然光合系统的跨物种移植的可行性和适用性,这为退行性疾病的治疗打下坚实的基础。

参考文献

1. Chen P, et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature. 2022 Dec;612(7940):546-554.

这篇关于Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636657

相关文章

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

SpringIntegration消息路由之Router的条件路由与过滤功能

《SpringIntegration消息路由之Router的条件路由与过滤功能》本文详细介绍了Router的基础概念、条件路由实现、基于消息头的路由、动态路由与路由表、消息过滤与选择性路由以及错误处理... 目录引言一、Router基础概念二、条件路由实现三、基于消息头的路由四、动态路由与路由表五、消息过滤

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Python实现自动化表单填写功能

《Python实现自动化表单填写功能》在Python中,自动化表单填写可以通过多种库和工具实现,本文将详细介绍常用的自动化表单处理工具,并对它们进行横向比较,可根据需求选择合适的工具,感兴趣的小伙伴跟... 目录1. Selenium简介适用场景示例代码优点缺点2. Playwright简介适用场景示例代码