【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8)

2024-01-22 14:04

本文主要是介绍【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用AI实现洋葱检测对农业具有以下意义:

  1. 提高效率:AI技术可以快速、准确地检测出洋葱中的缺陷和问题,从而提高了检测效率,减少了人工检测的时间和人力成本。
  2. 提高准确性:AI技术通过大量的数据学习和分析,能够更准确地识别出有缺陷的洋葱,降低了误判和漏检的可能性。
  3. 提高农产品质量:通过AI技术对洋葱进行检测,可以及时发现并处理有缺陷的产品,从而提高了农产品的整体质量。
  4. 提供决策支持:AI技术可以通过数据分析,预测洋葱的品质、产量和市场趋势等,为决策者提供科学依据,帮助制定更合理的生产和营销策略。
  5. 促进农业现代化:AI技术的引入可以推动农业的现代化进程,提高农业生产的科技含量和创新能力,促进农业的可持续发展。

总之,使用AI实现洋葱检测可以提高农业生产的效率和农产品质量,促进农业现代化发展。

以下是此项目的一些用例:

1.杂货库存管理:洋葱检测器可用于超市和杂货店,通过准确识别和计数存储区域或展示架上的洋葱,自动监控和管理洋葱的库存和库存。

2.洋葱收获自动化:使用洋葱检测器模型开发收获自动化设备可以帮助农民和农业公司检测和分离除草植物或土壤中的洋葱,显着提高洋葱收获过程的速度和效率。

3.食品工业质量控制:洋葱检测仪可以集成到食品加工厂的生产线中,使系统能够自动检测各个加工阶段的洋葱 - 例如分类,清洁和分级 - 以确保最终产品的质量一致。

4.减少洋葱浪费:该模型可用于零售、餐厅或家庭环境,以识别可能开始变质的洋葱,使消费者或餐饮服务经营者能够在需要丢弃之前优先使用这些洋葱,最终限制食物浪费。

5.智能厨房辅助:通过将洋葱检测器集成到智能厨房电器中,用户可以根据可用成分(包括洋葱)接收自动食谱建议,从而更轻松地确定膳食选项,而无需手动搜索食谱数据库。

本文介绍了基于深度学习yolov8的洋葱检测系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

二、数据集准备

本文使用的数据集来自https://www.cvmart.net/dataSets/detail/924。

该数据集共包含2425条训练数据,688条验证数据,363条测试数据,数据集图片示例如下:

本文提供整理后的洋葱实例分割数据集yolov8格式,可用于yolov8的训练,包含2425条训练数据,688条验证数据,363条测试数据。

三、模型训练

1、数据集配置文件

在ultralytics/ultralytics/cfg/datasets目录下添加onion.yaml,添加以下内容(path修改为自己的路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/coco/
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128-seg  ← downloads here (7 MB)# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: datasets/instance_seg/onion_yolo8  # dataset root dir
train: images/train  # train images (relative to 'path') 128 images
val: images/val  # val images (relative to 'path') 128 images
test:  # test images (optional)# Classes
names:0: onion
2、修改模型配置文件

新建ultralytics/cfg/models/v8/yolov8_onion.yaml ,添加以下内容:,添加以下内容:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8-seg instance segmentation model. For Usage examples see https://docs.ultralytics.com/tasks/segment# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-seg.yaml' will call yolov8-seg.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]s: [0.33, 0.50, 1024]m: [0.67, 0.75, 768]l: [1.00, 1.00, 512]x: [1.00, 1.25, 512]# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Segment, [nc, 32, 256]]  # Segment(P3, P4, P5)
3、训练模型

使用如下命令训练模型,相关路径更改为自己的路径,建议绝对路径:

yolo detect train project=deploy name=yolov8_onion exist_ok=True optimizer=auto val=True amp=True epochs=100  imgsz=640 model=ultralytics/cfg/models/v8/yolov8_onion.yaml  data=ultralytics/cfg/datasets/oniono.yaml
4、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val imgsz=640 model=deploy/yolov8_onion/weights/best.pt data=ultralytics/ultralytics/cfg/datasets/onion.yaml

四、推理

训练好了模型,可以使用如下代码实现推理,将权重放到同级目录:

from PIL import Image
from ultralytics import YOLO# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')image_path = 'test.jpg'
results = model(image_path)  # 结果列表# 展示结果
for r in results:im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像im.show()  # 显示图像im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

六、代码下载

1、洋葱实例分割数据集yolov8格式,可用于yolov8的训练,包含2425条训练数据,688条验证数据,363条测试数据

2、洋葱检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

这篇关于【深度学习目标检测】十七、基于深度学习的洋葱检测系统-含GUI和源码(python,yolov8)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/633200

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(