jieba+wordcloud分析豆瓣惊奇队长影评

2024-01-22 13:50

本文主要是介绍jieba+wordcloud分析豆瓣惊奇队长影评,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

复联三过后或许你还惊魂未定就被惊奇队长里的噬元兽吓到恐猫,whatever,本文将会介绍如何从豆瓣爬取惊奇队长的短评并加工处理生成词云。

爬取评论

首先还是爬取评论,老规矩用requests和BeautifulSoup就行。通过查看网页源码容易发现所有的短评都放在span标签中且class为short,这样就很方便了,用find_all就完事了。

# -*- coding:utf-8 -*-
import requests
import time
import random
from bs4 import BeautifulSoupurls = []
for i in range(0, 500, 20):urls.append('https://movie.douban.com/subject/26213252/comments?start=' + str(i) + '&limit=20&sort=new_score&status=P')  # 评论的翻页def singlepage_comment(url):# 得到单页的评论headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko)''Chrome/65.0.3325.162 Safari/537.36'}html = requests.get(url, headers)html.encoding = 'utf-8'soup = BeautifulSoup(html.text, 'lxml')fk = []for comment in soup.find_all(name='span', class_='short'):fk.append(comment.text)return fk# singlepage_comment('https://movie.douban.com/subject/26213252/comments?start=40&limit=20&sort=new_score&status=P')def store_comment(fk):# f = open('comments.txt', mode='w', encoding='utf-8')for comment in fk:f.write(comment)f.write('\n\n')# f.close()f = open('comments.txt', mode='w', encoding='utf-8')
for url in urls:comments = singlepage_comment(url)#print(comments)store_comment(comments)time.sleep(random.randrange(1, 3))  # 反爬f.close()

分词

分词这个部分使用jieba
具体的使用可以参考 https://github.com/fxsjy/jieba
安装使用的话 pip3 install jieba
ps. 若此处遇到安装错误的情况可能是pip版本太旧导致,运行python -m pip intsall --upgrade pip即可。

#-*- coding:utf-8 -*-
import jiebaf = open('comments.txt', mode='r', encoding='utf-8')comments = f.readlines()#sentence = "1.第一次看电影片头就有人鼓掌,Thank You Stan;2.漫威还是比DC会选角,神奇女侠完全是物化女性审美,惊奇队长是真女权,没有任何爱情戏,是女人就靠自己;3.铲屎官噩梦。"jieba.load_userdict('dict.txt')for comment in comments:seg_list = jieba.cut(comment)print("Full Mode: " + "/ ".join(seg_list))

对于这样一个语境,使用默认的字典分词会得到一些奇怪的结果,例如

Full Mode: 1/ ./ 第一次/ 看/ 电影片/ 头/ 就/ 有人/ 鼓掌/ ,/ Thank/  / You/  / Stan/ ;/ 2/ ./ 漫威/ 还是/ 比/ DC/ 会选角/ ,/ 神奇/ 女侠/ 完全/ 是/ 物化/ 女性/ 审美/ ,/ 惊奇/ 队长/ 是/ 真/ 女权/ ,/ 没有/ 任何/ 爱情/ 戏/ ,/ 是/ 女人/ 就/ 靠/ 自己/ ;/ 3/ ./ 铲/ 屎/ 官/ 噩梦/ 。

可见jieba并不能识别出例如惊奇队长、漫威、铲屎官、噬元兽等角色名以及一些简写、网络语言等,因此需要手动添加用户词典,这里我添加了一些常见的名词。
ps.这个列表可以通过查看分词的结果逐步加以调整

惊奇队长
漫威
DC
神奇女侠
美国队长
铲屎官
噬元兽
复联4
咕咕
尼克费瑞
寇森
美队
斯坦李
银河护卫队

添加用户词典后,分词的准确性和有效性就大为增长。

生成词云

这一步相对就较为简单了。
同样先安装wordcloud库pip3 install wordcloud
还需要用到matplotlib 这是一个画图的库

#-*- coding:utf-8 -*-
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jiebaf = open('comments.txt', mode='r', encoding='utf-8')
comments = f.readlines()
jieba.load_userdict('dict.txt')text = ''
for comment in comments:text += ' '.join(jieba.cut(comment))wordcloud = WordCloud(font_path="C:/Windows/Fonts/msyh.ttc",background_color="white",width=1000,height=880,stopwords={'漫威','惊奇队长','电影','就是','没有','一个','什么','还是','不是','可以','真的','角色','剧情','这个'}).generate(text)plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()

同样需要注意的是停用词。未启用停用词前
在未启用停用词前会有大量的干扰,例如漫威、电影、惊奇队长等与分析无关的词。在不断调整停用词后,就能得到一个比较有参考意义的词云。启用停用词后
之后生成的词云就比较有参考意义。

这篇关于jieba+wordcloud分析豆瓣惊奇队长影评的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/633174

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe