【计算机视觉】OpenCV实现身份证号识别:从图像到文本

2024-01-22 10:10

本文主要是介绍【计算机视觉】OpenCV实现身份证号识别:从图像到文本,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

目录

 

项目介绍:

代码详解:

完整代码展示:


项目介绍:

本文是一个基于Python和OpenCV的身份证号识别项目。它的主要目标是自动识别和提取身份证上的身份证号码。

下面是项目所用到的图片,大家可以自行下载:

  • 待识别身份证照片:
card_id.jpg
  • 用于数字模板匹配的图片: 
TP.png

该项目的工作流程大致如下:

  1. 图像预处理:首先,需要对输入的身份证图像进行预处理,包括灰度化、二值化、去噪等操作,以便后续能更准确地进行文字识别。
  2. 文字定位和分割:接着,使用OpenCV中的图像处理技术,如边缘检测、形态学操作等,对预处理后的图像进行文字定位和分割,获取每个数字或字母的位置。
  3. 模板匹配:然后,利用模板匹配技术,对每个分割出来的数字或字母进行匹配。
  4. 信息整合:最后,将所有识别出的数字或字母按照它们在身份证上的位置进行排列,得到完整的身份证号码。

这个项目有很多实际的应用场景,比如在自动化办公、身份验证等场合,可以大大提高工作效率和准确性,话不多说,直接进入正题。

代码详解:

1.安装Python和导入所需的库

import cv2
import numpy as np

2.定义绘图函数,以便后续便于展示图片

#绘图展示
def cv_show(name,image):cv2.imshow(name,image)cv2.waitKey(0)

3.定义排序函数,用于排序轮廓(contours)

def sort_contours(cnts,method='left-to-right'):reverse=Falsei=0if method=="right-to-left" or method=='bottom-to-top':reverse=Trueif method=='top-to-bottom' or method=='bottom-to-top':i=1boundingBoxes=[cv2.boundingRect(c) for c in cnts](cnts,boundingBoxes)=zip(*sorted(zip(cnts,boundingBoxes),key=lambda b :b[1][i],reverse=reverse))#返回排序后的轮廓列表和相应的边界框列表。return cnts,boundingBoxes

 4.定义一个resize函数,用于调整图像大小。与cv2.resize不同的是,允许你基于指定的高度和/或宽度来调整图像的大小

def resize(image,width=None,height=None,inter=cv2.INTER_AREA):dim=None(h,w)=image.shape[:2]if width is None and height is None:return imageif width is None:r=height/float(h)dim=(int(w*r),height)else:r=width/float(w)dim=(width,int(h*r))resize=cv2.resize(image,dim,interpolation=inter)return resize

5.模板图像中的数字定位处理

'''模板图像中的数字定位处理'''
img=cv2.imread("TP.png")
cv_show('img',img)
gray=cv2.imread("TP.png",0)
ref=cv2.threshold(gray,150,255,cv2.THRESH_BINARY_INV)[1]
cv_show('ref',ref)# 计算轮廓: cv2.findContours()数接受的参数为二值图,即黑白的(不是灰度图)
# CV2.RETR_EXTERNAL 只检测外轮廓,CV2.CHAIN APPROX SIMPLE只保留终点坐标
refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,255,0),2)
cv_show('img',img)refCnts=sort_contours(refCnts,method='left-to-right')[0]
# 保在模板中每个数字对应的像素值
digits={}
for (i,c) in enumerate(refCnts):(x,y,w,h)=cv2.boundingRect(c)roi=ref[y-2:y+h+2,x-2:x+w+2]roi=cv2.resize(roi,(57,88))roi=cv2.bitwise_not(roi)# cv_show('roi',roi)digits[i]=roi
cv2.destroyAllWindows()

图片处理结果展示:

 6.身份证图像处理

'''身份证号识别'''img=cv2.imread('./card_id.jpg')
cv_show('img',img)gray=cv2.imread('./card_id.jpg',0)
cv_show('gray',gray)ref=cv2.threshold(gray,120,255,cv2.THRESH_BINARY_INV)[1]
cv_show('ref',ref)# 计算轮廓: cv2.findContours()数接受的参数为二值图,即黑白的(不是灰度图)
# CV2.RETR_EXTERNAL 只检测外轮廓,CV2.CHAIN APPROX SIMPLE只保留终点坐标
refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,255,0),2)
cv_show('img',img)cv2.destroyAllWindows()# 遍历轮廓,找到数字部分像素区城
locs = []
for (i, c) in enumerate(refCnts):(x,y,w,h) = cv2.boundingRect(c) # 计外接知形# 选择合适的区域,根据实际任务来if (y > 330 and y< 360) and x>220: #符的留下来locs.append((x,y,w,h))
locs = sorted(locs, key=lambda x:x[0])

处理结果展示:

7.模板匹配并添加文本

output = [] # 用于存储最终结果
for (i, (gX,gY,gW, gH)) in enumerate(locs):groupOutput = []group = gray[gY - 2:gY + gH + 2,gX - 2:gX + gW + 2]# 适当加一点边界cv_show('group',group)#预处理group = cv2.threshold(group,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]# cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(),cv2.RETR_EXTERNAL ,cv2.CHAIN_APPROX_SIMPLE)digitCnts = sort_contours(digitCnts,method='left-to-right')[0]# 计算每一组中的每一个数值for c in digitCnts:#找到当前数值的轮廓,resize成合适的的大小(x,y,w,h) = cv2.boundingRect(c)roi = group[y:y + h,x:x + w]roi = cv2.resize(roi,(57,88))# cv_show('roi',roi)'''-------使用模板匹配,计算匹配得分-----------'''scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(img, (gX - 5, gY - 5), (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)# cv2.putText()是OpenCV库中的一个函数,用于在图像上添加文本。cv2.putText(img, "".join(groupOutput), (gX, gY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)output.extend(groupOutput)  # 得到结果

模板匹配后的识别结果:

8.打印结果

# 打印结果
print("ID Card  #: {}".format("".join(output)))
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

完整代码展示:

# -*- coding: utf-8 -*-
# @Time : 2023/10/18 9:32
# @Author :Muzi
# @File : id_card.py
# @Software: PyCharmimport cv2
#绘图展示
def cv_show(name,image):cv2.imshow(name,image)cv2.waitKey(0)def sort_contours(cnts,method='left-to-right'):reverse=Falsei=0if method=="right-to-left" or method=='bottom-to-top':reverse=Trueif method=='top-to-bottom' or method=='bottom-to-top':i=1boundingBoxes=[cv2.boundingRect(c) for c in cnts](cnts,boundingBoxes)=zip(*sorted(zip(cnts,boundingBoxes),key=lambda b :b[1][i],reverse=reverse))return cnts,boundingBoxesdef resize(image,width=None,height=None,inter=cv2.INTER_AREA):dim=None(h,w)=image.shape[:2]if width is None and height is None:return imageif width is None:r=height/float(h)dim=(int(w*r),height)else:r=width/float(w)dim=(width,int(h*r))resize=cv2.resize(image,dim,interpolation=inter)return resize
'''模板图像中的数字定位处理'''
img=cv2.imread("TP.png")
cv_show('img',img)
gray=cv2.imread("TP.png",0)
ref=cv2.threshold(gray,150,255,cv2.THRESH_BINARY_INV)[1]
cv_show('ref',ref)# 计算轮廓: cv2.findContours()数接受的参数为二值图,即黑白的(不是灰度图)
# CV2.RETR_EXTERNAL 只检测外轮廓,CV2.CHAIN APPROX SIMPLE只保留终点坐标
refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,255,0),2)
cv_show('img',img)refCnts=sort_contours(refCnts,method='left-to-right')[0]
# 保在模板中每个数字对应的像素值
digits={}
for (i,c) in enumerate(refCnts):(x,y,w,h)=cv2.boundingRect(c)roi=ref[y-2:y+h+2,x-2:x+w+2]roi=cv2.resize(roi,(57,88))roi=cv2.bitwise_not(roi)# cv_show('roi',roi)digits[i]=roi
cv2.destroyAllWindows()'''身份证号识别'''img=cv2.imread('./card_id.jpg')
cv_show('img',img)gray=cv2.imread('./card_id.jpg',0)
cv_show('gray',gray)ref=cv2.threshold(gray,120,255,cv2.THRESH_BINARY_INV)[1]
cv_show('ref',ref)# 计算轮廓: cv2.findContours()数接受的参数为二值图,即黑白的(不是灰度图)
# CV2.RETR_EXTERNAL 只检测外轮廓,CV2.CHAIN APPROX SIMPLE只保留终点坐标
refCnts,hierarchy=cv2.findContours(ref.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,255,0),2)
cv_show('img',img)cv2.destroyAllWindows()# 遍历轮廓,找到数字部分像素区城
locs = []
for (i, c) in enumerate(refCnts):(x,y,w,h) = cv2.boundingRect(c) # 计外接知形ar = w / float(h)# 选择合适的区域,根据实际任务来if (y > 330 and y< 360) and x>220: #符的留下来locs.append((x,y,w,h))cnt = refCnts[20](x, y), r = cv2.minEnclosingCircle(cnt)  # 计算轮廓的外接圆
locs = sorted(locs, key=lambda x:x[0])
import numpy as np
output = []
for (i, (gX,gY,gW, gH)) in enumerate(locs):groupOutput = []group = gray[gY - 2:gY + gH + 2,gX - 2:gX + gW + 2]# 适当加一点边界cv_show('group',group)#预处理group = cv2.threshold(group,0,255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]# cv_show('group',group)# 计算每一组的轮廓digitCnts,hierarchy = cv2.findContours(group.copy(),cv2.RETR_EXTERNAL ,cv2.CHAIN_APPROX_SIMPLE)digitCnts = sort_contours(digitCnts,method='left-to-right')[0]# 计算每一组中的每一个数值for c in digitCnts:#找到当前数值的轮廓,resize成合适的的大小(x,y,w,h) = cv2.boundingRect(c)roi = group[y:y + h,x:x + w]roi = cv2.resize(roi,(57,88))# cv_show('roi',roi)'''-------使用模板匹配,计算匹配得分-----------'''scores = []# 在模板中计算每一个得分for (digit, digitROI) in digits.items():# 模板匹配result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)(_, score, _, _) = cv2.minMaxLoc(result)scores.append(score)# 得到最合适的数字groupOutput.append(str(np.argmax(scores)))# 画出来cv2.rectangle(img, (gX - 5, gY - 5), (gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)# cv2.putText()是OpenCV库中的一个函数,用于在图像上添加文本。cv2.putText(img, "".join(groupOutput), (gX, gY - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)output.extend(groupOutput)  # 得到结果# 打印结果
print("Card ID #: {}".format("".join(output)))
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

这篇关于【计算机视觉】OpenCV实现身份证号识别:从图像到文本的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632658

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一