R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)

本文主要是介绍R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 "AVOCADO"(异常植被变化检测)算法

AVOCADO"(异常植被变化检测)算法是一种连续的植被变化检测方法,也能捕捉植被再生。该算法基于 R 软件包 "npphen"(Chavez 等人,2017 年),开发用于监测物候变化,并经过调整,以半自动和连续的方式监测森林干扰和再生。该算法使用所有可用数据,不需要某些预处理步骤,如去除异常值。参考植被(本例中为未受干扰的森林)取自附近已知在整个时间序列中未受干扰的像素,因此无需留出部分时间序列作为历史基线。通过在 AVOCADO 中使用完整的时间序列,可以对植被变化做出更可靠的预测,同时提高我们处理数据缺口的能力。该算法考虑了年度物候的自然变异性(利用核拟合的灵活性),因此适用于监测季节性强的地区(如干旱生态系统)和渐变/微小变化的地区(如退化)。

"AVOCADO"(异常植被变化检测)算法是一种用于检测植被变化的算法。这个算法主要用于遥感图像的处理,通过比较不同时间点的图像来识别和定位植被变化的区域。

该算法的核心思想是将植被的变化视为异常值,并使用统计学方法来检测和分类这些异常值。具体而言,AVOCADO算法使用了聚类分析和假设检验的技术,对图像中的像素进行分类和比较。

首先,AVOCADO算法将两个不同时间点的图像分别转换为灰度图像。然后,使用聚类分析将像素分为不同的类别,类别之间的差异被认为是植被变化的指标。

接下来,AVOCADO算法使用假设检验来确定哪些类别的差异是统计显著的。通过比较类别之间的均值和方差,算法能够确定哪些区域的植被发生了显著变化。

最后,AVOCADO算法将检测到的变化区域标记出来,并生成一个变化图像,以便进一步分析和应用。

总的来说,AVOCADO算法是一种有效的植被变化检测方法,可以在遥感图像中准确地识别和定位植被变化的区域。它可以在农业、环境监测和城市规划等领域中得到广泛应用。

步骤

步骤 1:安装所需软件包


软件包可通过 github 获取,并可通过 "远程 "安装:

library(remotes) 
install_github('MDecuy/AVOCADO')  
#load library
library(AVOCADO) 

 

请注意,关于 AVOCADO 算法所有参数的解释可在 github 文档中找到。

其他需要的软件包:rgdal、raster、npphen、bfastSpatial、RColorBrewer、rts、lubridate

GitHub - MDecuy/AVOCADO: Monitoring vegetation change in a continuous way 

步骤 2:下载卫星数据


目前有多种卫星来源和数据下载方式,如地球探索者或谷歌地球引擎平台。有关如何在谷歌地球引擎指南平台上下载各种卫星数据的信息很多,但在此我们提供了一个 Landsat Collection 2 Level 2 数据的小型示例脚本。

第一步是上传您感兴趣区域(AOI)的形状文件。这可以在 "资产 "选项卡下完成,一旦上传,您就可以将目录(见 "表 ID")添加到下面的脚本中(在 "var input_polygon "下)。

 GEE代码:

//Downloading Landsat data via the Google Earth Engine (GEE) platform.// Paste this code into your GEE script page// Specify the location of the before uploaded shapefile in your assets
var input_polygon = 'users/yourusername/ AOI';
// Export folder in your google drive
var input_export_folder = 'FolderName_You_Created_in_Your_GoogleDrive_Account';
// Start and end dates
var input_StartStr = ee.String('1990-01-01');
var input_FinishStr = ee.String('2015-01-01');
/* available indices: NDVI (ndvi_ind), NBR (nbr_ind), EVI (evi_ind), SAVI (savi_ind), tasseled cap 
brightness (Tcap_bri_ind), tasseled cap greenness (Tcap_gre_ind), tasseled cap wetness (Tcap_wet_ind)
Specify the vegetation indices you are interested in by marking it as TRUE, or if not as FALSE. 
In this example we use NDMI.*/
var ndvi_ind = ['FALSE'];
var ndmi_ind = ['TRUE'];
var nbr_ind = ['FALSE'];
var evi_ind = ['FALSE'];
var savi_ind = ['FALSE'];
var Tcap_bri_ind = ['FALSE'];
var Tcap_gre_ind = ['FALSE'];
var Tcap_wet_ind = ['FALSE'];
///
// END of input variables./* The following lines can be left default, unless you want 
to change e.g. the cloud cover percentage.*/
///
// Buffer to download around the above area, use 0 for no buffer
var input_buffer = 0;
// Convert text string dates to date tpe
var Start = ee.Date(input_StartStr);
var Finish = ee.Date(input_FinishStr);
// Create a feature collection out of the fustion table id
var Polygon = ee.FeatureCollection(ee.String(input_polygon));
// Buffer the area of interest
var PolygonBuffer = input_buffer === 0 ? Polygon.first().geometry() : Polygon.first().geometry().buffer(input_buffer);
Map.addLayer(PolygonBuffer,null,'Buffer');
Map.centerObject(PolygonBuffer);
// Standard names to rename the bands regardless of collection
var selected_bands = ['blue','green','red','nir','swir','swir2','QA_PIXEL'];// Applies scaling factors.
var applyScaleFactors = function (image) {var opticalBands = image.select('SR_.*').multiply(0.0000275).add(-0.2);return image.addBands(opticalBands, null, true);
};// Merge the 3 collections, select, and rename the bands to standard names
var Collection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').map(applyScaleFactors).select(['SR_B1','SR_B2','SR_B3','SR_B4','SR_B5','S

这篇关于R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631910

相关文章

SQL server数据库如何下载和安装

《SQLserver数据库如何下载和安装》本文指导如何下载安装SQLServer2022评估版及SSMS工具,涵盖安装配置、连接字符串设置、C#连接数据库方法和安全注意事项,如混合验证、参数化查... 目录第一步:打开官网下载对应文件第二步:程序安装配置第三部:安装工具SQL Server Manageme

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性: