(七) yolov5s自己数据集训练 锥桶检测

2024-01-21 13:20

本文主要是介绍(七) yolov5s自己数据集训练 锥桶检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0、配置环境

配置yolov5s所需的环境:

框架:pytorch

环境管理:anaconda(推荐)

IDE:pycharm(推荐)

前边系列有讲过,这里先跳过了

  1. 数据集准备

数据集,就是针对于自己任务的图片和标签,以自己的应用场景为例需要检测锥桶,数据打标签的方法在上一篇这里https://blog.csdn.net/qq_53086461/article/details/129210323,可以自己手动打标签,或者通过半自动标注,或者别人训练好的模型你拿过来把输出当成是标签。采用的是yolo标签格式,类别,归一化的中心和长宽。

文件关系如下,yolov5-master文件夹内新建dataset,下边包含images和labels:images放是train和val的图片,我这里用了202张训练,110张评估。labels是放着标签文件txt,需要和train和val的图片对应起来。

2、配置yaml文件

在yolov5-master/data下新建自己的yaml文件

path:dataset位置

train:训练集位置

val:评估集位置

names:就是你自定义的数据中类别名字,因为标签是yolo格式的类别只有数字,所以要做个映射写在这里,以我的数据集为例,就是4个类别,分别是大锥桶、黄色、蓝色、红色。

path: dataset
train: images/train
val: images/val# Classes
names:0: biggyellow1: yellow2: blue3: red

3、开始训练

提前配置pycharm

  1. 文件位置,你要执行的文件

  1. 参数,--weights 写一个预训练模型yolov5s,--data 换成刚才自己的写的yaml文件,根据自己显卡设置--batch-size,因为我是windows做的实验,加上了--worksers 0

  1. 切换环境

--weights yolov5s.pt --data data/cone.yaml --workers 0 --batch-size 16

如果是linux服务器

conda activate 你的环境
cd 你的yolo文件夹
python train.py --weights yolov5s.pt --data data/cone.yaml --workers 0 --batch-size 8

3.1查看打屏信息

训练202张,评估111张,一共是100个epoch,而每个epoch是13次(202/bachsize),每个epoch大概是30s。设备是笔记本3060 6G,所以自己算一下一个小时左右就可以训练结束。

3.2tensorboard查看信息

打开一个anaconda powershell终端,cd到你的文件夹

tensorboard --logdir runs\train

会出现一个网址,locolhost:6006,浏览器输入即可,这里会有一些训练的信息,并且通过曲线就可以看到。一些指标,和loss曲线,如果你发现loss不下降那基本训练也没啥用了,或者训练集下降评估集不咋变,就过拟合了,就可以及时停掉省电费。

3.3 查看runs/train/exp

这里也有一些训练过程中结果展示,weights中存放了权重文件,自动保存效果最好的权重文件。

4、测试

训练结束后,会自动测试,并给出一定结果,我们想可视化的看到训练出的结果,可以将刚才训练中pt文件导出来,自己测试。

--weights runs/train/exp3/weights/best.pt --source dataset/images/val

运行detect.py,在runs/detect文件夹生成exp

5、其他

  1. detect 时候 添加--save-txt可以保存标签,这些标签可以用作训练,当数据集不多的时候

--weights runs/train/exp3/weights/best.pt --source dataset/images/val --save-txt

2、找到colors,这里我修改了前四个颜色,所以刚好和我的标签颜色对应起来

完结~~~

这篇关于(七) yolov5s自己数据集训练 锥桶检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629683

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加