基于jupyter notebook的python编程-----通过python编程实现通信系统的多径仿真

2024-01-21 05:50

本文主要是介绍基于jupyter notebook的python编程-----通过python编程实现通信系统的多径仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于jupyter notebook的python编程-----通过python编程实现通信系统的多径仿真目录


对于通信传输,多径传输一直以来都是重要且难点的内容,不仅需要考虑多径衰落带来的影响,还需要考虑怎么在模拟中完成多径的搭建模拟,本次博客,林君学长主要带大家了解,如何通过python代码实现通信系统的多径仿真

一、多径衰落信道简介

1、多径衰落信道

在无线信道中,发送和接收天线之间通常存在多于一条的信号传播路径。多径的存在是因为发射机和接收机之间建筑物和其他物体的反射、绕射、散射等引起的。当信号在无线信道传播时,多径反射和衰减的变化将使信号经历随机波动。因此,无线信道的特性是不确定的、随机变化的。

2、多径衰落信道特点

  • 频率选择性衰落
  • 时间选择性衰落

3、多径衰落信道原理

本次博客,通过一个简单的模拟程序来说明多径衰落信道的特点,然后再给出多径衰落信道的仿真方法。
1)、首先,先说一下程序模拟多径信道的场景,如图4-15所示
在这里插入图片描述
假设在一条笔直的高速公路上,一端安装了一个固定的基站,在另一端有一面完全反射电磁波的墙面,基站距反射墙的距离为d,移动台距基站初始距离为 r 0 r_0 r0。基站发射一个频率为f的正弦信号,表示为 c o s ( 2 π f t ) cos(2\pi ft) cos(2πft),由于墙面的反射,移动台可以接收到2径信号,其中之一是从基站直接发射的信号,另一径是从反射墙反射过来的信号。
2)、首先来看移动台静止的情况。显然,从基站发出的直射信号到达移动台需要的时间为 r 0 / c r_0/c r0/c (c为光速),从反射墙反射过来的信号到达移动台所需要的时间为 ( 2 d − r 0 ) / c (2d-r_0)/c (2dr0)/c。换句话说,在时
刻t,移动台分别接收到了从时刻 t − r 0 / c t-r_0/c tr0/c 基站发出的直射信号和从时刻 t − ( ( 2 d − r 0 ) / c ) t-((2d-r_0)/c) t((2dr0)/c) 基站发出的反射信号。
3)、信号在传播的过程中要衰减,自由空间中,电磁波功率随距离r按平方规律衰减,相应的电场强度(接收信号电压)随 1 / r 1/r 1/r 规律衰减并且反射信号同直射信号的相位相反。所以,时刻t移动台接收到的合成信号为
在这里插入图片描述

式中,减号体现了反射信号与直射信号的相位相反

接下来,我们就通过python代码来实现上面的原理吧!

二、python的多径衰落信道模拟

1、在 r 0 r_0 r0处的信道特点

1)、python代码如下所示:

#r0=3
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
plt.rcParams['axes.unicode_minus']=False
f=1                                        #发射信号频率
v=0                                        #移动台速度,静止时刻为0
c=3e8                                      #电磁波速度,光速
r0=3                                       #移动台距离基站的初始距离
d=10                                       #基站距离反射墙的距离
t1=np.array([])                            #时间
for i in np.arange(0.1,10+0.0001,0.0001):t1=np.insert(t1,len(t1),i)
E1=np.cos(2*np.pi*f*((1-v/c)*t1-r0/c))/(r0+v*t1)                 #直射径信号
E2=np.cos(2*np.pi*f*((1+v/c)*t1+(r0-2*d)/c))/(2*d-r0-v*t1)      #反射径信号
plt.plot(t1,E1,t1,E2,'-g',t1,E1-E2,'-r')                          #画出直射径信号、反射径信号、移动台接收的合成信号
plt.legend(["直射径信号","反射径信号","移动台接收的合成信号"],loc='upper left')
plt.axis([0,10,-0.8,0.8])                                         #设置横纵比
plt.show()

2)、模拟结果
在这里插入图片描述
3)、结论
上图可以清楚地看出,即使移动台是静止的,由于反射径的存在,使得接收到的合成信号最大值要小于直射径的信号.

2、修改移动台距离基站的位置,让 r 0 = 9 r_0=9 r0=9

1)、python代码如下所示:

#r0=9
f=1                                        #发射信号频率
v=0                                        #移动台速度,静止时刻为0
c=3e8                                      #电磁波速度,光速
r0=9                                       #移动台距离基站的初始距离
d=10                                       #基站距离反射墙的距离
t1=np.array([])                            #时间
for i in np.arange(0.1,10+0.0001,0.0001):t1=np.insert(t1,len(t1),i)
E1=np.cos(2*np.pi*f*((1-v/c)*t1-r0/c))/(r0+v*t1)                 #直射径信号
E2=np.cos(2*np.pi*f*((1+v/c)*t1+(r0-2*d)/c))/(2*d-r0-v*t1)      #反射径信号
plt.plot(t1,E1,t1,E2,'-g',t1,E1-E2,'-r')                          #画出直射径信号、反射径信号、移动台接收的合成信号
plt.legend(["直射径信号","反射径信号","移动台接收的合成信号"],loc='upper left')
plt.axis([0,10,-0.8,0.8])                                         #设置横纵比
plt.show()

2)、模拟结果
在这里插入图片描述
3)、结论
从图中可以看出,这次由于靠近反射墙的位置,直射信号要比 r 0 = 3 r _0=3 r0=3处弱-一些,反射信号要比 r 0 = 3 r_0=3 r0=3位置处的信号强一些,但移动台接收到的合成信号更弱了,不仅要小于直射径的信号更小于反射径的信号

3、修改发射频率 f = 1 0 8 且 r 0 = 3 f=10^8且r_0=3 f=108r0=3

以上是发射频率f=1的情况,发射其他频率的信号结果会怎样呢?修改 f = 1 0 8 f=10^8 f=108并且 r 0 = 3 r_0=3 r0=3
1)、python代码如下所示:

#f=10的8次方,r0=3
f=1e8                                      #发射信号频率
v=0                                        #移动台速度,静止时刻为0
c=3e8                                      #电磁波速度,光速
r0=3                                       #移动台距离基站的初始距离
d=10                                       #基站距离反射墙的距离
t1=np.array([])                            #时间
for i in np.arange(0.1,10+0.0001,0.0001):t1=np.insert(t1,len(t1),i)
E1=np.cos(2*np.pi*f*((1-v/c)*t1-r0/c))/(r0+v*t1)                 #直射径信号
E2=np.cos(2*np.pi*f*((1+v/c)*t1+(r0-2*d)/c))/(2*d-r0-v*t1)      #反射径信号
plt.plot(t1,E1,t1,E2,'-g',t1,E1-E2,'-r')                          #画出直射径信号、反射径信号、移动台接收的合成信号
plt.legend(["直射径信号","反射径信号","移动台接收的合成信号"],loc='upper left')
plt.axis([0,10,-0.8,0.8])                                         #设置横纵比
plt.show()

2)、模拟结果
在这里插入图片描述
3)、结论
我们会发现,此时移动台接收到的信号得到了增强;至此,可以得出结论,在同一位置, 由于反射径信号的存在,发射不同频率的信号时,在接收机处接收到信号有的频率是被增强了,有的频率是被削弱了。频率选择性衰落由此产生。
4)、扩展
既然有频率选择性衰落,自然会问,哪些频率会被增强,哪些频率会被削弱呢?在上面的例子中,如果f=1, 2, 3,.100, … 1000, 会发现这些频率基本,上都是被削弱的,只有让f充分大,如f=10", 才会看出信号被增强了,那么就把那些受到影响基本一致的频率范围称为相干带宽。

4、让移动台以速度v=1向反射墙运动

使 f = 2 , v = 1 , r 0 = 3 , d = 15 , t 1 = 0.1 : 12 : 0.001 f=2 ,v=1,r0=3,d=15,t1=0.1:12:0.001 f=2,v=1,r0=3,d=15,t1=0.1:12:0.001

1)、上面讨论 了移动台静止的情况。现在让移动台向反射墙运动,速度为v,则在时刻t,移动台距离基站的位置r=r+vt。把最开始式中的 r 0 r_0 r0用r代替得:
在这里插入图片描述
2)、那么通过python代码模拟如下:

#f=2,v=1,r0=3,d=15,t1=0.1:12:0.001 
f=2                                        #发射信号频率
v=1                                        #移动台速度,静止时刻为0
c=3e8                                      #电磁波速度,光速
r0=3                                       #移动台距离基站的初始距离
d=15                                       #基站距离反射墙的距离
t1=np.array([])                            #时间
for i in np.arange(0.1,12+0.001,0.001):t1=np.insert(t1,len(t1),i)
E1=np.cos(2*np.pi*f*((1-v/c)*t1-r0/c))/(r0+v*t1)                 #直射径信号
E2=np.cos(2*np.pi*f*((1+v/c)*t1+(r0-2*d)/c))/(2*d-r0-v*t1)      #反射径信号
plt.plot(t1,E1,t1,E2,'-g',t1,E1-E2,'-r')                          #画出直射径信号、反射径信号、移动台接收的合成信号
plt.legend(["直射径信号","反射径信号","移动台接收的合成信号"],loc='upper left')
plt.axis([0,12,-0.5,0.5])                                         #设置横纵比
plt.show()

3)、模拟结果:
在这里插入图片描述

5、分离出移动台接收的合成信号

1)、分离接收合成信号python代码如下所示:

#f=2,v=1,r0=3,t1=0.1:12:0.001时候单独画接收信号
f=2                                        #发射信号频率
v=1                                        #移动台速度,静止时刻为0
c=3e8                                      #电磁波速度,光速
r0=3                                       #移动台距离基站的初始距离
d=15                                       #基站距离反射墙的距离
t1=np.array([])                            #时间
for i in np.arange(0.1,12+0.001,0.001):t1=np.insert(t1,len(t1),i)
E1=np.cos(2*np.pi*f*((1-v/c)*t1-r0/c))/(r0+v*t1)                 #直射径信号
E2=np.cos(2*np.pi*f*((1+v/c)*t1+(r0-2*d)/c))/(2*d-r0-v*t1)      #反射径信号
plt.plot(t1,E1-E2,'-r')                                           #移动台接收的合成信号
plt.legend(["移动台接收的合成信号"],loc='upper left')
plt.axis([0,12,-0.5,0.5])                                         #设置横纵比
plt.show()

2)、分离结果:
在这里插入图片描述
3)、结论
从前面的程序中可知多径导致了频率选择性。当移动台运动起来后,发现即使同一频率,在不同的时间点,合成信号的强度也是不一样的。

三、多径仿真结论

1、多径仿真结论

1)、在数字通信中,接收端是周期性的对接收符号进行判决从而恢复信息的,1个符号脉冲的周期可大可小,因此,根据相干时间与符号脉冲周期的相对长短,可以把信道分为慢变信道和快变信道。在上面第二张图中,如果发送符号的周期小于1.25s,就可以认为这是慢变信道(或者准静态信道)
2)、无线信道大体可以分为4种:慢变瑞利衰落信道、快变瑞利衰落信道、慢变频率选择性信道、快变频率选择性信道。
在这里插入图片描述

2、多径扩展

1)、如果信道没有频率选择性,则最大的时延扩展Tmax要远远小于符号周期T(Tmax <<T,),在这种情况下,所有的延迟多径分量到达的时段仅为一个符号时间的一小部分。 在这种情况下,信道可以用单一路径来建模,输入/输出关系可以表示为乘法,即:
在这里插入图片描述

四、Matlab多径仿真完整代码

林君学长同时在这里给出Matlab的多径仿真的一部分代码,其他可通过以下代码改写

1、matlab多径源码如下

clear all
f=1;        %发射信号频率
v=0;        %移动台速度,静止时刻为0
c=3e8;      %电磁波速度,光速
r0=3;       %移动台距离基站的初始距离
d=10;       %基站距离反射墙的距离
t1=0.1:0.0001:10;     %时间
E1=cos(2*pi*f*((1-v/c).*t1-r0/c))./(r0+v.*t1);    %直射径信号
E2=cos(2*pi*f*((1+v/c)*t1+(r0-2*d)/c))./(2*d-r0-v*t1);  %反射径信号
figure
plot(t1,E1,t1,E2,'-g',t1,E1-E2,'-r')   %移动台接收的合成信号
legend('直射径信号','反射径信号','移动台接收的合成信号')
axis([0 10 -0.8 0.8])     %设置横纵比

以上就是本次博客的全部内容啦,通过本次博客,大家可以更好的了解到通信系统多径仿真原理,同时,林君学长也希望大家能够深入的了解多径衰落应该如何降低到最低,适合我们信号传输的那个点,理解原理;代码有错误的地方记得给林君学长留言改正。
遇到问题的小伙伴也记得评论区留言,林君学长看到会给大家回复解答的,这个学长不太冷!

陈一月的又一天编程岁月^ _ ^

这篇关于基于jupyter notebook的python编程-----通过python编程实现通信系统的多径仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628537

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,