【核心复现】基于改进鲸鱼优化算法的微网系统能量优化管理matlab

本文主要是介绍【核心复现】基于改进鲸鱼优化算法的微网系统能量优化管理matlab,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、主要内容

1 冷热电联供型微网系统

2 长短期记忆网络(Long Short Term Memory, LSTM)

3 改进鲸鱼优化算法

二、部分代码

三、运行结果

四、下载链接 


一、主要内容

该程序为《基于改进鲸鱼优化算法的微网系统能量优化管理》matlab代码,主要内容如下:

针对包含多种可再生能源的冷热电联供型微网系统的能量优化问题,为了优化其运行过程的经济效益和环境效益,本文提出一种基于改进鲸鱼优化算法的多时间尺度下能量优化方法,首先根据长短期记忆网络(Long Short Term Memory,LSTM)预测得到的可再生能源出力和负荷需求预先制定调度规划,然后以此预测数据为基础,采用改进鲸鱼优化算法调整可控设备出力,优化微网系统的运行成本和固定成本。将该方法应用于某楼宇冷热电联供型微网,结果表明,在满足负荷需求的基础上使得经济成本平均降低4.03%且经济效益更优。

1 冷热电联供型微网系统

冷热电联供型微网系统主要提供冷、热、电三种形式的能量,可实现能源的综合利用和高效利用。本文所研究的CCHP系统主要包括光伏发电系统、风力发电系统、联供单元、储能系统、燃气轮机等设备,如图1所示。

2 长短期记忆网络(Long Short Term Memory, LSTM)

长短期记忆网络(Long Short Term Memory, LSTM作为一种特殊的循环神经网络(Recurrent neural network, RNN),主要用于解决长序列训练过程中的梯度消失和梯度爆炸问题。典型的LSTM结构如图2所示。

3 改进鲸鱼优化算法

鲸鱼优化算法(The Whale Optimization Algorithm,WOA)[13-14]是受到鲸鱼在海底运用气泡捕食法捕食的启发而发明的一种优化算法,主要包含两个阶段:围捕阶段和气泡捕食阶段。

二、部分代码

% 对训练数据和测试数据进行分区,序列的前%90用于训练,后10%用于测试
% numTimeSteosTrain = floor(0.9*numel(data(:,1)));
% 选取最后的24个数据作为测试数据,前面的数据均为训练数据
numTimeSteosTrain = 719;dataTrain = data(1:numTimeSteosTrain,:);
dataTest = data(numTimeSteosTrain+1:end,:);% 标准化数据
mu = mean(dataTrain,1);
sig = std(dataTrain,1);dataTrainStandardized = (dataTrain - mu) ./ sig;% 准备预测变量和响应
XTrain = dataTrainStandardized(1:end-1,:);
YTrain = dataTrainStandardized(2:end,:);% 定义LSTM网络
numFeatures = 6;
numResponses = 6;
numHiddenUnits = 200;layers = [ ...sequenceInputLayer(numFeatures)lstmLayer(numHiddenUnits)fullyConnectedLayer(numResponses)regressionLayer];options = trainingOptions('adam', ...'MaxEpochs',500, ...'GradientThreshold',1, ...'InitialLearnRate',0.005, ...'LearnRateSchedule','piecewise', ...'LearnRateDropPeriod',125, ...'LearnRateDropFactor',0.2, ...'Verbose',0, ...'Plots','training-progress');% 训练LSTM网络
net = trainNetwork(XTrain',YTrain',layers,options);% 预测将来时间步
dataTestStandardized = (dataTest - mu) ./ sig;

三、运行结果

四、下载链接 

这篇关于【核心复现】基于改进鲸鱼优化算法的微网系统能量优化管理matlab的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628196

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语