12- OpenCV:算子(Sobel和Laplance) 和Canny边缘检测 详解

2024-01-20 17:52

本文主要是介绍12- OpenCV:算子(Sobel和Laplance) 和Canny边缘检测 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、Sobel算子

1、卷积应用-图像边缘提取

2、Sobel算子(索贝尔算子)

3、相关的API(代码例子)

二、Laplance算子

1、理论

2、API使用(代码例子)

三、Canny边缘检测

1、Canny算法介绍

2、API使用(代码例子)


一、Sobel算子

1、卷积应用-图像边缘提取

         在这个红点变化最大,变化率很高的,梯度也是最陡。变化率做成一根曲线,所以变化率最大的就在顶点。

(1)边缘是什么 :是像素值发生跃迁的地方,是图像的显著特征之一,在图像特征提取、对象检测、模式识别等方面都有重要的作用。

(2)如何捕捉/提取边缘 – 对图像求它的一阶导数       

                delta =  f(x) – f(x-1), delta越大,说明像素在X方向变化越大,边缘信号越强,

(3)用Sobel算子就好!卷积操作!

2、Sobel算子(索贝尔算子)

(1)是离散微分算子(discrete differentiation operator),用来计算图像灰度的近似梯度;

(2)Soble算子功能集合高斯平滑和微分求导;

(3)又被称为一阶微分算子,求导算子,在水平和垂直两个方向上求导,得到图像X方法与Y方向梯度图像;

(4)求取导数的近似值,kernel=3时不是很准确,OpenCV使用改进版本Scharr函数,算子如下:放大了权重,差异性更加大了,不过也更加准确些。

3、相关的API(代码例子)

(1)cv_Sobel函数原型

cv::Sobel (

InputArray Src // 输入图像

OutputArray dst// 输出图像,大小与输入图像一致

int depth // 输出图像深度.

int dx.  // X方向,几阶导数

int dy // Y方向,几阶导数.

int ksize, SOBEL算子kernel大小,必须是奇数,1、3、5、7,一般是3

double scale  = 1

double delta = 0

int borderType = BORDER_DEFAULT

)

(2)cv::Scharr

cv::Scharr (

InputArray Src // 输入图像

OutputArray dst// 输出图像,大小与输入图像一致

int depth // 输出图像深度.

int dx.  // X方向,几阶导数

int dy // Y方向,几阶导数.

double scale  = 1

double delta = 0

int borderType = BORDER_DEFAULT

)

(3)其他的API

— GaussianBlur( src, dst, Size(3,3), 0, 0, BORDER_DEFAULT );

— cvtColor( src,  gray, COLOR_RGB2GRAY );

— addWeighted( A, 0.5,B, 0.5, 0, AB); convertScaleAbs(A, B)// 计算图像A的像素绝对值,输出到图像B

(4)代码演示

图像处理流程:

-高斯平滑(高斯模糊)GaussianBlur( )

-转灰度

-求梯度X和Y:做Sobel索贝尔计算

-得到振幅图像

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace cv;
int main(int argc, char** argv) {Mat src, dst;src = imread("test.jpg");if (!src.data) {printf("could not load image...\n");return -1;}char INPUT_TITLE[] = "input image";char OUTPUT_TITLE[] = "sobel-demo";namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);imshow(INPUT_TITLE, src);Mat gray_src;GaussianBlur(src, dst, Size(3, 3), 0, 0);cvtColor(dst, gray_src, CV_BGR2GRAY);imshow("gray image", gray_src);Mat xgrad, ygrad;Scharr(gray_src, xgrad, CV_16S, 1, 0);Scharr(gray_src, ygrad, CV_16S, 0, 1);// Sobel(gray_src, xgrad, CV_16S, 1, 0, 3);// Sobel(gray_src, ygrad, CV_16S, 0, 1, 3);// 转为绝对值convertScaleAbs(xgrad, xgrad);convertScaleAbs(ygrad, ygrad);imshow("xgrad", xgrad);imshow("ygrad", ygrad);Mat xygrad = Mat(xgrad.size(), xgrad.type());printf("type : %d\n", xgrad.type());int width = xgrad.cols;int height = ygrad.rows;for (int row = 0; row < height; row++) {for (int col = 0; col < width; col++) {int xg = xgrad.at<uchar>(row, col);int yg = ygrad.at<uchar>(row, col);int xy = xg + yg;xygrad.at<uchar>(row, col) = saturate_cast<uchar>(xy);}}//addWeighted(xgrad, 0.5, ygrad, 0.5, 0, xygrad);imshow(OUTPUT_TITLE, xygrad);waitKey(0);return 0;
}

效果展示:

二、Laplance算子

1、理论

解释:在二阶导数的时候,最大变化处的值为零即边缘是零值。通过二阶 导数计算,依据此理论我们可以计算图像二阶导数,提取边缘。

实际上就是:拉普拉斯算子操作(Laplance operator)-> cv::Laplance

2、API使用(代码例子)

(1)cv::Laplacian原型:

Laplacian(

InputArray src,

OutputArray dst,

int depth, //深度CV_16S

int kisze, // 3

double scale = 1,

double delta =0.0,

int borderType = 4

)

(2)代码演示

图像处理流程:

- 高斯模糊 – 去噪声GaussianBlur()

- 转换为灰度图像cvtColor()

- 拉普拉斯 – 二阶导数计算Laplacian()

-取绝对值convertScaleAbs()

-显示结果

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace cv;
int main(int argc, char** argv) {Mat src, dst;src = imread("test.jpg");if (!src.data) {printf("could not load image");}char input_title[] = "input image";char output_title[] = "Laplaiance Result";namedWindow(input_title, CV_WINDOW_AUTOSIZE);imshow(input_title, src);Mat gray_src, edge_image;GaussianBlur(src, dst, Size(3, 3), 0, 0);cvtColor(dst, gray_src, CV_BGR2GRAY);Laplacian(gray_src, edge_image, CV_16S, 3);convertScaleAbs(edge_image, edge_image);// 边缘处理threshold(edge_image, edge_image, 0, 255, THRESH_OTSU | THRESH_BINARY);namedWindow(output_title, CV_WINDOW_AUTOSIZE);imshow(output_title, edge_image);waitKey(0);return 0;
}

效果展示:

三、Canny边缘检测

1、Canny算法介绍

(1)简介:Canny算法是一种经典的边缘检测算法,常用于计算机视觉和图像处理领域。

它由John F. Canny在1986年提出,并被广泛应用于图像分割、目标检测等任务中。

(3)图像处理流程:

图像处理流程:

- 高斯模糊 - GaussianBlur,对图像进行降噪,避免影响最终的结果

- 灰度转换 - cvtColor,必须是8位的灰度图像

- 计算梯度 – Sobel/Scharr

- 非最大信号抑制

- 高低阈值

- 输出二值图像

(3)非最大信号抑制:图表边缘的信号很强,边缘信号只有一个,要对非边缘信号进行抑制。要对法线或者切线方向的值去掉。

        对梯度幅值图像进行非极大值抑制。这一步骤的目的是将边缘细化为单像素宽度,并抑制非最大值区域。具体来说,对于每个像素,只有在其梯度方向上具有最大幅值的像素才被保留。

(4)高低阈值输出二值图像:

        根据两个阈值(高阈值和低阈值)对非极大值抑制后的图像进行阈值处理。高阈值用于确定强边缘,而低阈值用于确定弱边缘。具体来说,如果某个像素的梯度幅值大于高阈值,则将其标记为强边缘;如果某个像素的梯度幅值介于低阈值和高阈值之间,则将其标记为弱边缘;如果某个像素的梯度幅值小于低阈值,则将其丢弃。

一个为高阈值,一个为低阈值(T1和T2);

— T1, T2为阈值,凡是高于T2的都保留(是很强的边缘像素 ),凡是小于T1都丢弃,从高于T2的像素出发,凡是大于T1而且相互连接的,都保留。最终得到一个输出二值图像。

— 推荐的高低阈值比值为 T2: T1 = 3:1/2:1,其中T2为高阈值,T1为低阈值。

(5)边缘连接

        通过连接强边缘和与之相连的弱边缘来形成完整的边缘。具体来说,如果某个弱边缘与某个强边缘在空间上相邻接,则将其标记为强边缘。

2、API使用(代码例子)

(1)cv::Canny原型

Canny(

InputArray src, // 8-bit的输入图像

OutputArray edges,// 输出边缘图像, 一般都是二值图像,背景是黑色

double threshold1,// 低阈值,常取高阈值的1/2或者1/3

double threshold2,// 高阈值

int aptertureSize,// Soble算子的size,通常3x3,取值3

bool L2gradient // 选择 true表示是L2来归一化,否则用L1归一化

(2)代码演示

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace cv;
Mat src, gray_src, dst;
int t1_value = 50;
int max_value = 255;
const char* OUTPUT_TITLE = "Canny Result";
void Canny_Demo(int, void*);
int main(int argc, char** argv) {src = imread("test,jpg");if (!src.data) {printf("could not load image...\n");return -1;}char INPUT_TITLE[] = "input image";namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);imshow(INPUT_TITLE, src);cvtColor(src, gray_src, CV_BGR2GRAY);createTrackbar("Threshold Value:", OUTPUT_TITLE, &t1_value, max_value, Canny_Demo);Canny_Demo(0, 0);waitKey(0);return 0;
}void Canny_Demo(int, void*) {Mat edge_output;blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);Canny(gray_src, edge_output, t1_value, t1_value * 2, 3, false);//dst.create(src.size(), src.type());// 使用遮罩层,只有非零的元素才会被copy到模板中//src.copyTo(dst, edge_output);// ~取反输出imshow(OUTPUT_TITLE, ~edge_output);
}

效果展示:

这篇关于12- OpenCV:算子(Sobel和Laplance) 和Canny边缘检测 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626822

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2