DIOR数据集xml转txt格式并划分训练集测试集验证集(用于yolo)

2024-01-18 21:59

本文主要是介绍DIOR数据集xml转txt格式并划分训练集测试集验证集(用于yolo),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1.数据集下载

下载地址:

 1)http://www.escience.cn/people/gongcheng/DIOR.html

 2) 飞桨官网(推荐)

下载如下:

新建一个文件夹JPEGImages,将JPEGImages-test和PEGImages-trainval里的图片都放进JPEGImages里面。最后文件夹包含文件:

2.数据集预处理

# coding:utf-8import os
import random
import argparseimport xml.etree.ElementTree as ET
from os import getcwd
from shutil import copyfileparser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='DIOR/Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Mainopt = parser.parse_args()sets = ['train', 'val', 'test']
classes = ['airplane', 'airport', 'baseballfield', 'basketballcourt', 'bridge', 'chimney', 'dam','Expressway-Service-area', 'Expressway-toll-station', 'golffield', 'groundtrackfield', 'harbor','overpass', 'ship', 'stadium', 'storagetank', 'tenniscourt', 'trainstation', 'vehicle', 'windmill']abs_path = os.getcwd()
print(abs_path)# if not os.path.exists('/DIOR'):
#     os.makedirs('DIOR')if not os.path.exists('DIOR_dataset/labels/'):os.makedirs('DIOR_dataset/labels/')
if not os.path.exists('DIOR_dataset/labels/train'):os.makedirs('DIOR_dataset/labels/train')
if not os.path.exists('DIOR_dataset_yolo/labels/test'):os.makedirs('DIOR_dataset/labels/test')
if not os.path.exists('DIOR_dataset_yolo/labels/val'):os.makedirs('DIOR_dataset/labels/val')if not os.path.exists('DIOR_dataset/images/'):os.makedirs('DIOR_dataset/images/')
if not os.path.exists('DIOR_dataset/images/train'):os.makedirs('DIOR_dataset/images/train')
if not os.path.exists('DIOR_dataset/images/test'):os.makedirs('DIOR_dataset/images/test')
if not os.path.exists('DIOR_dataset/images/val'):os.makedirs('DIOR_dataset/images/val')def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, hdef convert_annotation(image_id, path):
#输入输出文件夹,根据实际情况进行修改in_file = open('DIOR/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('DIOR_dataset/labels/' + path + '/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):#difficult = obj.find('difficult').text#difficult = obj.find('Difficult').textcls = obj.find('name').textif cls not in classes:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))b1, b2, b3, b4 = b# 标注越界修正if b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')train_percent = 0.6
test_percent = 0.2
val_percent = 0.2xmlfilepath = opt.xml_path
# txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
# if not os.path.exists(txtsavepath):
#     os.makedirs(txtsavepath)num = len(total_xml)
list_index = range(num)
list_index = list(list_index)
random.shuffle(list_index)train_nums = list_index[:int(num * train_percent)]
test_nums = list_index[int(num * train_percent): int(num * test_percent)+int(num * train_percent)]
val_nums = list_index[int(num * test_percent)+int(num * train_percent):]for i in list_index:name = total_xml[i][:-4]if i in train_nums:convert_annotation(name, 'train')   # lablesimage_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/train/' + name + '.jpg'copyfile(image_origin_path, image_target_path)if i in test_nums:convert_annotation(name, 'test')   # lablesimage_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/test/' + name + '.jpg'copyfile(image_origin_path, image_target_path)if i in val_nums:convert_annotation(name, 'val')   # lablesimage_origin_path = 'DIOR/JPEGImages/' + name + '.jpg'image_target_path = 'DIOR_dataset/images/val/' + name + '.jpg'copyfile(image_origin_path, image_target_path)最后生成文件如图所示:

这篇关于DIOR数据集xml转txt格式并划分训练集测试集验证集(用于yolo)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/620390

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I