TRB 2024论文分享:一种基于Swin Transformer的车标识别新方法

2024-01-18 12:52

本文主要是介绍TRB 2024论文分享:一种基于Swin Transformer的车标识别新方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TRB(Transportation Research Board,美国交通研究委员会,简称TRB)会议是交通研究领域知名度最高学术会议之一,近年来的参会人数已经超过了2万名,是参与人数和国家最多的学术盛会。TRB会议几乎涵盖了交通领域的所有主题,主要包括公路、铁路、水运、航空、管道等诸多领域,接收来自交通系统、交通工程、交通政策、交通管理、交通实际操作、政府研究、学术研究和工业界最新的研究成果。TRB会议的论文反映了交通领域的研究前沿,具有广泛的参考价值。

本文主要介绍我们在交通领域被TRB 2024接收的关于车辆身份识别的研究工作,论文的题目为《A New Method for Vehicle Logo Recognition Based on Swin Transformer》,第一作者为李杨。车标识别是实现车辆身份识别的核心任务之一,高效的车标识别方法能够有效地识别车辆品牌,进而可以实现车辆跟踪或者车辆品牌市场占有率估计等目标。目前,基于卷积神经网络(CNN)的车标识别方法被广泛应用。然而,CNN的全局建模能力仍然低效,进而使车标识别方法难以突破性能瓶颈。为了解决上述问题,本文使用Swin Transformer实现实时的车标识别并对其进行微调以获得最佳性能。在三个公开车标数据集(HFUT-VL1、XMU、CTGU-VLD)上进行的广泛实验证明了本文方法的优越性。

1. 背景与挑战

(1) 车标特征提取仍不够充分

车标属于小目标,大多数据集采集到的车标图像往往具有较低的分辨率。通过研究发现,捕获车标的细节特征往往能够大幅提高准确率。基于CNN的车标识别方法往往是通过增加网络层数以提取车标更抽象的语义特征。然而,这种方法提高了计算成本,并且会导致梯度爆炸和梯度消失等问题出现。Transformer中的注意力机制能够进行高效的并行计算并轻松捕获抽象的语义特征。因此,本文聚焦使用Transformer中的注意力机制对车标特征进行处理。

(2) CNN全局建模效率较低

在现有的车标识别方法中,基于CNN的方法被大多数研究者重点关注。尽管CNN通过核卷积能够轻松实现空间局部性特征提取,并通过平移卷积来增大感受野以提取丰富的特征。但是,CNN的全局建模效率仍然较低,进而难以突破其性能瓶颈。因此,我们使用Swin Transformer模型,先通过窗口化的注意力机制对车标图像进行局部建模,再利用滑动窗口的方法对每个窗口进行全局建模,以较低的计算代价提高全局建模效率。

2. 方法

图1 基于Swin Transformer的车标识别方法的整体架构

基于Swin Transformer的车标识别方法的整体架构如图1所示。首先,输入的RGB车标图像被分割成互不重叠的patch,其中每个patch可以被视为一个“token”。其次,这些token的原始通道维度通过Linear Embedding投影到任意维度。接下来,多个 Swin Transformer模块以及Patch Merging模块将应用于这些token。最后,与CNN类似,特征向量通过Linear layer映射到与类别数相同维度的输出向量,用于车辆标志的分类。此外,如图2所示,Swin Transformer的高效全局建模在于其独特的窗口注意力计算策略,具体而言,通过W-MSA处理每个独立窗口的特征,再通过SW-MSA建立窗口之间的特征依赖关系,进而实现复杂度与图像尺寸大小成线性关系的高效建模。总之,本文提出的基于Swin Transformer的车标识别方法能够高效提取车标特征进而实现分类,并且该方法具有较低的复杂度和较强的泛化能力。

图2 SW-MSA的注意力计算

3. 实验结果

实验使用的车标公开数据集包括HFUT-VL1、XMU和CTGU-VLD数据集。车标识别方法性能的评价指标主要是准确率(%)和处理速度(image/s)。通过微调Swin Transformer结构参数来提高模型性能,并获得最佳结果。为验证本文方法在车标识别中的有效性,我们在上述三种数据集上进行了两组对比试验。实验结果表明,与对比的车标识别方法相比,本文方法识别准确率和处理速度等方面具有良好的性能

4. 总结

本文提出的基于Swin Transformer车标识别方法实现了实时车标识别,并在多个公开数据集上表现出色。更为重要的是,本文提出的方法以较低的复杂度全面提升了车标识别的性能。未来的研究可以探索将车标识别与车牌、车型和车辆颜色等其它特征的综合识别相结合,进一步全面提升车辆身份识别的性能。

这篇关于TRB 2024论文分享:一种基于Swin Transformer的车标识别新方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619054

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

最详细安装 PostgreSQL方法及常见问题解决

《最详细安装PostgreSQL方法及常见问题解决》:本文主要介绍最详细安装PostgreSQL方法及常见问题解决,介绍了在Windows系统上安装PostgreSQL及Linux系统上安装Po... 目录一、在 Windows 系统上安装 PostgreSQL1. 下载 PostgreSQL 安装包2.

SQL中redo log 刷⼊磁盘的常见方法

《SQL中redolog刷⼊磁盘的常见方法》本文主要介绍了SQL中redolog刷⼊磁盘的常见方法,将redolog刷入磁盘的方法确保了数据的持久性和一致性,下面就来具体介绍一下,感兴趣的可以了解... 目录Redo Log 刷入磁盘的方法Redo Log 刷入磁盘的过程代码示例(伪代码)在数据库系统中,r

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

html5的响应式布局的方法示例详解

《html5的响应式布局的方法示例详解》:本文主要介绍了HTML5中使用媒体查询和Flexbox进行响应式布局的方法,简要介绍了CSSGrid布局的基础知识和如何实现自动换行的网格布局,详细内容请阅读本文,希望能对你有所帮助... 一 使用媒体查询响应式布局        使用的参数@media这是常用的

Spring 基于XML配置 bean管理 Bean-IOC的方法

《Spring基于XML配置bean管理Bean-IOC的方法》:本文主要介绍Spring基于XML配置bean管理Bean-IOC的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录一. spring学习的核心内容二. 基于 XML 配置 bean1. 通过类型来获取 bean2. 通过