MinHash-LSH 哈希模糊去重:如何解决医学大模型的大规模数据去重?

2024-01-17 18:20

本文主要是介绍MinHash-LSH 哈希模糊去重:如何解决医学大模型的大规模数据去重?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MinHash-LSH 最小哈希 + 局部敏感哈希:如何解决医学大模型的大规模数据去重?

    • 大模型的数据问题
    • MinHash-LSH 最小哈希 + 局部敏感哈希:大规模数据集去重优化
      • Jaccard相似度:用于比较样本集之间的相似性
      • 降维技术 Minhash
      • LSH – 局部敏感哈希
    • MinHash-LSH 多个开源数据集去重

 


大模型的数据问题

问题:训练医学大模型的数据规模真的很大,其中会夹杂很多重复数据。

重复数据对于大模型微调也有较大影响,数据集必须去重后再用于模型训练。

临床数据:

  • 20 亿条文本数据

教材数据:

  • 1000+ 本指南
  • 7万+ 药品说明书
  • N 个科室疾病培训数据
  • N 本古籍、教材

开源数据:

  • 中文医学命名实体识别CMedEE

  • 中文医学文本实体关系抽取CMedIE

  • 临床术语标准化任务CHIP-CDN

  • 临床试验筛选标准短文本分类CHIP-CTC

  • 平安医疗科技疾病问答迁移学习CHIP-STS

  • 医疗搜索检索词意图分类KUAKE-QIC

  • 医疗搜索查询词—页面标题相关性KUAKE-QTR

  • 医疗搜索查询词—查询词相关性KUAKE-QQR

  • 中文医学命名实体识别CMedEE

  • 中文医学文本实体关系抽取CMedIE

  • 临床术语标准化任务CHIP-CDN

  • 临床试验筛选标准短文本分类CHIP-CTC

  • 平安医疗科技疾病问答迁移学习CHIP-STS

  • 医疗搜索检索词—意图分类KUAKE-QIC

  • 医疗搜索查询词—页面标题相关性KUAKE-QTR

  • 医疗搜索查询词—查询词相关性KUAKE-QQR

  • 医疗搜索查询词—相关性检索KUAKE-IR

  • 阴阳性实体判别CHIP-MDCFNPC

  • 对话实体抽取IMCS-V2-NER

  • 意图标签分类IMCS-V2-DAC

  • 智能诊疗对话症状识别IMCS-V2-SR

  • 诊疗报告生成IMCS-V2-MRG

  • 医疗对话生成MedDG

  • MedDialog-CN https://github.com/UCSD-AI4H/Medical-Dialogue-System

  • IMCS-V2 https://github.com/lemuria-wchen/imcs21

  • CHIP-MDCFNPC https://tianchi.aliyun.com/dataset/95414

  • MedDG https://tianchi.aliyun.com/dataset/95414

  • cMedQA2 https://github.com/zhangsheng93/cMedQA2

  • Toyhom https://github.com/Toyhom/Chinese-medical-dialogue-data

  • michaelwzhu/ChatMed-Consult michaelwzhu/ChatMed-Consult · Hugging Face

  • Huatuo-26M https://github.com/FreedomIntelligence/Huatuo-26M

  • Medical https://huggingface.co/datasets/shibing624/medical

  • 复旦DISC-MedLLM https://github.com/FudanDISC/DISC-MedLLM

  • DoctorGLM https://zhuanlan.zhihu.com/p/657058443

  • MedicalGPT https://zhuanlan.zhihu.com/p/657058443

  • ChatMed:https://zhuanlan.zhihu.com/p/657058443

  • MedQA-ChatGLM:https://zhuanlan.zhihu.com/p/657058443

  • 神农中医药大模型:https://zhuanlan.zhihu.com/p/657058443

  • 70B医学大模型:https://huggingface.co/datasets/epfl-llm/guidelines

  • 澳门理工caregpt:https://github.com/WangRongsheng/CareGPT

MinHash-LSH 最小哈希 + 局部敏感哈希:大规模数据集去重优化

怎么去重呢?

要用到一个炒鸡牛逼的算法:MinHash-LSH

谷歌、亚马逊等公司的许多核心功能都是 MinHash-LSH 实现的。

  • 解法:MinHash-LSH
  • 问题特征:能在大数据中,寻找特征向量相似又不完全相同的情况下,找出尽可能近的样本。
  • 应用场景:亚马逊根据相似度最高的买家的购买历史找到新的商品推荐、谷歌搜索字词与 Google 的索引互联网之间执行相似性搜索、Spotify根据用户音乐风格,寻找匹配的相似度

当有 30 亿级别的集合需要比较时,使用传统的全对全比较方法(即比较任意两个集合是否相似)将变得非常耗时,这种方法的时间复杂度是 O(n^2),随着集合数量的增加,所需的计算时间呈平方级增长。

在很多实际情况下,绝大多数的集合对之间都不相似,这意味着全对全比较中的大部分计算实际上是无用功。

如果能有一种方法能够快速地将可能相似的集合对筛选出来,只对这些潜在相似的集合对进行详细的相似度计算,那么就可以大幅度降低计算成本。

MinHash 和局部敏感哈希(LSH)就是这样一种解决方案:

  • MinHash 是一种哈希技术,可以用来有效地估计集合之间的Jaccard相似度

  • LSH 是用来将那些相似度高的集合哈希到相同的桶中的技术。

只有被哈希到同一个桶中的集合对才需要进行相似度比较,大大减少了比较的数量,从而降低了算法的整体时间复杂度。

时间复杂度从 平方量级 降低到 接近线性复杂度。

MinHash-LSH 的设计逻辑:

  • 一般的hash,原内容发生微小变化后,hash值的变化是无法预估的。
  • 字符串改一个字母后,整个字符串md5变得完全不一样,图片改一个像素后hash值也变得完全不一样。
  • 局部敏感hash的改进在于,原内容发生微小变化后,其hash值也只发生微小变化。
  • 从而满足原内容相近hash值也相近的良好性质。
  • 这种性质的好处在于,可以在hash空间进行近邻检索。

怎么实现这种逻辑呢?

  • 从对内容敏感的信息,变成,对位置敏感的哈希
  • 这种哈希算法,得到的哈希值(或者说指纹),在向量空间中的位置是“敏感”的
  • 两个指纹在向量空间中的相对位置是有意义的,近就是真的近,远就是真的远
  • 而不是如md5一样,在向量空间中的远近和实际含义的远近无关系

Jaccard相似度:用于比较样本集之间的相似性

Jaccard相似度的定义是两个集合交集大小与并集大小之比。

具体来说,如果有两个集合A和B,那么ta们之间的 Jaccard 相似度:

  • [ J ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ ] [ J(A, B) = \frac{|A \cap B|}{|A \cup B|} ] [J(A,B)=ABAB]

∣ A ∩ B ∣ |A ∩ B| AB 表示集合A和集合B的交集中元素的数量。

∣ A ∪ B ∣ |A ∪ B| AB 表示集合A和集合B的并集中元素的数量。

举个列子,集合X = {a,b,c},Y = {q,a,b}。

那 Jac(X,Y) = 2 / 3 = 0.67。

X 和 Y 有 67% 的元素相同。

Jaccard相似度的值范围在0到1之间:

  • 0 表示没有共同元素,即两个集合完全不相似
  • 1 表示两个集合完全相同
  • 在0到1之间的值表示集合之间的部分相似性

Jaccard相似度越高,表示两个集合的相似度越大。

在数据处理中,我们可以使用 jieba 分词库,把一句话分词成各个元素后,计算相似度。

query1 = ["ta喜欢的水果有?"]                          # 分词前
query1 = ['ta', '喜欢', '的', '水果', '有', '?']      # 分词后query2 = ["ta喜欢的坚果有?"]                          # 分词前
query2 = ['ta', '喜欢', '的', '坚果', '有', '?']      # 分词后

降维技术 Minhash

直接计算数据之间的相似度(Jaccard相似度)会非常耗时,每个集合里面的元素,俩俩比较。

如果大部分集合对之间的相似度都很低,进行俩俩比较会做很多无用功。

传统的方法需要对两个集合的每个元素进行一对一的比较,以确定ta们的相似性。

MinHash 算法通过为每个集合生成一个固定长度的标签(哈希函数产生签名),来代表集合的特征。

  • 原本复杂的集合相似性比较,简化为标签(MinHash值)的比较
  • 比较签名的成本,远低于比较完整的集合

这些签名保留了集合间相似度的信息,还能保持原始数据的相似性。

  • 如果两个集合很相似,Minhash 值也会很相似

但单个 MinHash 值可能无法准确地反映两个集合的相似性,可能是一个偶然的匹配。

在实际应用中,我们会使用数百或数千个哈希函数来增加估计的准确性。

如果大多数哈希函数产生的MinHash值都相同,我们可以有更高的信心认为两个集合是相似的。

  • 解法:MinHash
  • 问题特征:在高维空间中估计稀疏数据集合的相似性,特别是当直接计算成对相似度不可行时。如需要快速而精确地估计大型数据集中集合之间的Jaccard相似度。
  • 应用场景:文本处理中比较文档相似性,如新闻聚类、查重系统;生物信息学中比较基因组序列;推荐系统中评估用户间或物品间的相似性。

这里是为了应用,具体数学公式、概率证明,请猛击《原始论文》。

LSH – 局部敏感哈希

LSH 函数旨在将相似的值放入相同的存储桶中。

LSH 的核心思想是将相似的数据点映射到相同的“桶”(buckets)中,而不相似的点映射到不同的桶中。

这样,当需要找到一个数据点的最近邻时,可以仅在相同桶中的点之间进行搜索,而不是在整个数据集中搜索,大大降低了计算量。

LSH 是基于哈希的技术,其特点是保持局部相似性:相似的输入在哈希后应该产生相似或相同的哈希值。

与传统哈希函数不同,LSH 的目的不是为了避免冲突,而是为了让冲突更可能发生在相似的项之间。

LSH 的具体实现方式有很多,最常见的包括:

  1. MinHash LSH:适用于度量集合相似性(如Jaccard相似性)的LSH。MinHash 将每个集合转换成一个固定长度的签名,该签名是由多个最小哈希值组成的向量,这些最小哈希值由集合中的元素通过多个哈希函数计算得到。

  2. SimHash LSH:用于处理高维特征向量的文本或其他数据的相似性。SimHash 通过哈希函数将特征向量转换为一个固定长度的位串,这样,相似的数据点会产生相似的位串。

  3. Euclidean LSH:适用于欧几里得空间中的数据点。它使用超平面将空间划分成不同的区域,并将落在同一区域内的点映射到同一个桶中。

LSH 算法的详细步骤如下:

  1. 选择适合的 LSH 家族:根据数据的性质和相似性度量选择合适的 LSH 函数。

  2. 定义哈希表和哈希函数:创建多个哈希表,并为每个哈希表定义一个或多个 LSH 函数。

  3. 哈希和存储数据点:使用定义的哈希函数将数据点映射到各自的桶中。

  4. 查询过程:在查询最近邻时,首先计算查询点的哈希值,然后只在对应桶中的点集合中进行搜索,这样可以快速缩小搜寻范围。

LSH 的效率和精度受到哈希函数个数、哈希表数量和桶的大小等参数的影响。

在应用中,这些参数需要根据具体应用进行调整以达到最佳效果。

由于 LSH 是一种概率算法,允许少量的误报(false positives)和漏报(false negatives),但在实际应用中,这通常是可接受的,特别是在处理大规模数据集时,ta提供了显著的速度优势。

  • 解法:LSH(局部敏感哈希)
  • 问题特征:当数据量很大,使得对所有可能的数据对进行比较变得不可行时,需要一种方法能够高效地查找和查询近似最近邻
  • 应用场景:大规模图像或视频检索系统,寻找视觉上相似的内容;文本或文章数据库中寻找相似文档;音频或声音样本匹配;大型数据库中的快速相似项查找

MinHash-LSH 多个开源数据集去重

配置环境包:

pip install jieba datasketch  

MinHash-LSH 代码:

import jieba
import re  # 假设这里应该导入 re 而不是 ro
from datasketch import MinHash, MinHashLSHquery = "想人想得厉害的时候,也是淡淡的。像饿了很多日的旅人闻到炊烟,但知道不是自家的。"sentences = ["想人想得厉害的时候,也是轻轻的。像漂泊很多日的旅人闻到炊烟,但知道不是返乡的。","梦中梦见心上人,也是轻轻的。像漂泊良久的游子见到归帆,却明白并非返乡的。"]regex = re.compile(",|。")def split_word(sentence):global regexreturn [word for word in jieba.lcut(re.sub(regex, '', sentence)) if word.strip()]query_lcut = split_word(query)
sentences_lcut = [split_word(sentence) for sentence in sentences]
print(query_lcut)
print(sentences_lcut)'''
print(query_lcut):
['想人', '想', '得', '厉害', '的', '时候', '也', '是', '淡淡的', '像', '饿', '了', '很多', '日', '的', '旅人', '闻到', '炊烟', '但', '知道', '不是', '自家', '的']
[]print(sentences_lcut):[
['想人', '想', '得', '厉害', '的', '时候', '也', '是', '轻轻', '的', '像', '漂泊', '很多', '日', '的', '旅人', '闻到', '炊烟', '但', '知道', '不是', '返乡', '的']
['梦中', '梦见', '心上人', ',', '也', '是', '轻轻', '的', '像', '漂泊', '良久', '的', '游子', '见到', '归帆', '却', '明白', '并非', '返乡', '的']
'''threshold = 0.5   # 相似度 > 0.5
num_perm = 128
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
for idx, sentence_lcut in enumerate(sentences_lcut):minhash = MinHash(num_perm=num_perm)minhash.update_batch([word.encode('utf-8') for word in sentence_lcut])lsh.insert("minhash_sentence_{}".format(idx+1), minhash)print(list(lsh.keys))
# 输出:['minhash_sentence_1', 'minhash_sentence_2']minhash_query = MinHash(num_perm=num_perm)
minhash_query.update_batch([word.encode('utf-8') for word in query_lcut])
simi_result = lsh.query(minhash_query)
print("Jaccard相似度 > {} 的句子有:{}".format(threshold, simi_result))
# 输出:Jaccard相似度 > 0.5 的句子有:['minhash_sentence_1']  # 删除 minhash_sentence_1,从 LSH 中移除查询到的结果,需要对 simi_result 进行遍历
for key in simi_result:lsh.remove(key)print(list(lsh.keys))
# 输出:['minhash_sentence_2']

去重多个开源文件所有数据:

import jieba
import re
from datasketch import MinHash, MinHashLSH# 此函数用于分词
def split_word(sentence):regex = re.compile(",|。|?|!")return [word for word in jieba.lcut(re.sub(regex, '', sentence)) if word.strip()]# 配置参数
threshold = 0.5   # 相似度阈值
num_perm = 128    # MinHash的排列次数# 初始化LSH对象
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)# 假设你有一个函数来获取多个开源文件下所有问答对
# def get_qa_pairs():
#     # 这里应该包含读取文件并返回所有问答回答的代码
#     return qa_pairs# 读取所有问答回答对
qa_pairs = get_qa_pairs()# 为每个问答回答创建MinHash并加入LSH
for idx, qa_pair in enumerate(qa_pairs):q, a = qa_pair                                   # 假设qa_pair是一个包含问题和答案的元组combined_text = q + " " + a                      # 可以根据需要将问题和答案合并或分别处理words = split_word(combined_text)minhash = MinHash(num_perm=num_perm)for word in words:minhash.update(word.encode('utf-8'))lsh.insert("qa_pair_{}".format(idx), minhash)# 查询并去重
unique_qa_pairs = []
for idx, qa_pair in enumerate(qa_pairs):q, a = qa_paircombined_text = q + " " + awords = split_word(combined_text)minhash = MinHash(num_perm=num_perm)for word in words:minhash.update(word.encode('utf-8'))# 查询相似问答回答result = lsh.query(minhash)# 如果只有自己或没有其他相似项,则视为唯一if len(result) <= 1 or (len(result) == 2 and "qa_pair_{}".format(idx) in result):unique_qa_pairs.append(qa_pair)# 将此问答回答标记为唯一,可选步骤lsh.remove("qa_pair_{}".format(idx))# 输出去重后的问答对
print(unique_qa_pairs)

这篇关于MinHash-LSH 哈希模糊去重:如何解决医学大模型的大规模数据去重?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616841

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h