论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation

本文主要是介绍论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals


## 主要内容:

1、使用CNN-LSTM神经网络架构同时计算HR、SBP、DBP、MAP(心率和血压);

2、通过Advancement of Medical Instrumentation (AAMI) and the British Hypertension Society (BHS)的标准;

3、在MIMIC II数据集上使用10-fold交叉验证;

4、采样频率125HZ;

5、预处理,将数据集中的数据长度过短、数据值异常的去掉;


网络架构:

在这里插入图片描述


网络层配置:

在这里插入图片描述

损失函数:

H δ ( y , f ( x ) ) = { 1 2 ( y − f ( x ) ) 2 , i f ∣ y − f ( x ) ∣ ≤ δ , δ ∣ y − f ( x ) ∣ − 1 2 δ 2 , o t h e r w i s e . H_\delta(y,f(x))=\begin{cases}\frac{1}{2}(y-f(x))^2,&if~|y-f(x)|\le\delta,\\[6pt]\delta|y-f(x)|-\frac{1}{2}\delta^2,&otherwise.\end{cases} Hδ(y,f(x))= 21(yf(x))2,δyf(x)21δ2,if yf(x)δ,otherwise.
其中 δ = 1 \delta=1 δ=1


评价指标:

M A E = 1 n ∑ i = 1 n ∣ y i − y ^ i ∣ M E = 1 n ∑ i = 1 n ( y i − y ^ i ) S D = 1 n ∑ i = 1 n ( x i − M E ) 2 \begin{aligned} {MAE}& =\frac{1}{n}\sum\limits_{i=1}^n\left|y_i-\hat{y}_i\right| \\ ME& =\frac{1}{n}\sum\limits_{i=1}^n\left(y_i-\hat{y}_i\right) \\ SD& =\sqrt{\frac{1}{n}\sum\limits_{i=1}^n\left(x_i-ME\right)^2} \end{aligned} MAEMESD=n1i=1nyiy^i=n1i=1n(yiy^i)=n1i=1n(xiME)2


实验结果:

在这里插入图片描述

参考:

Applying a Deep Learning Network in Continuous Physiological Parameter Estimation Based on Photoplethysmography Sensor Signals

这篇关于论文阅读和分析:Applying a Deep Learning Network in Continuous Physiological Parameter Estimation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616814

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb