钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵

2024-01-17 17:10

本文主要是介绍钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡 作者:韩信子@ShowMeAI
📘 数据分析 ◉ 技能提升系列:http://www.showmeai.tech/tutorials/33
📘 AI 面试题库系列:http://www.showmeai.tech/tutorials/48
📘 本文地址:http://www.showmeai.tech/article-detail/302
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏ShowMeAI查看更多精彩内容

我们经常会谈到工业界端到端的机器学习建模,所谓端到端,是指的把整个过程构建在一个完整的流程(比如pipeline管道)中,包括数据侧的处理、模型建模调优,及模型部署应用等环节,如我们之前所说,完整的机器学习开发流程如下:

在本篇内容中,ShowMeAI将给大家讲解到下述内容:

  • 使用 PyCaret 构建端到端机器学习管道
  • ML 模型部署 & FastAPI 开发实时预测

💡 工具库

📌 PyCaret

PyCaret 是一个开源的低代码机器学习库,内置Python端到端模型管理工具,被用于自动化机器学习工作流。因其易用性、简单性以及快速高效地构建和部署端到端 ML 原型的能力而广受欢迎。

更多有关 PyCaret 的信息,可以在官方 📘 GitHub 查看。

我们先通过 pip 安装 pycaret 工具库:

pip install pycaret

📌 FastAPI

FastAPI 是一个快速(高性能)的Web框架,主要特点是:

  • 快速 :非常高的性能,是目前可用的最快的 Python 框架之一 。
  • 快速编码 :将开发速度提高2到3倍。
  • 简单 :易于学习和使用。

更多有关 FastAPI 的信息,请查看官方 📘 GitHub

我们也通过 pip 安装 fastapi:

pip install fastapi

💡 业务背景

本篇内容中涉及的案例来自达顿商学院(案例研究发表在 📘 哈佛商学院),案例中收集了 6000 颗钻石的数据,包括它们的价格和切工、颜色、形状等属性。

🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [13] 钻石价格预测的ML全流程!从模型构建调优道部署应用! 『** pycaret-master 数据集**』

ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub

💡 数据

我们在本篇内容中,使用钻石的克拉重量、切工、颜色和其他特征等属性来预测钻石的价格。 数据集可从 📘 此处下载。

# 加载数据
from pycaret.datasets import get_data
data = get_data('diamond')

💡 探索性数据分析

我们先做一些快速数据分析和可视化来评估数据字段属性(重量、切工、颜色、净度等)与目标变量/标签Price的关系。

# 绘制carat_weight和Price的散点图
import plotly.express as px
fig = px.scatter(x=data['Carat Weight'], y=data['Price'], facet_col = data['Cut'], opacity = 0.25, template = 'plotly_dark', trendline='ols', trendline_color_override = 'red', title = 'SARAH GETS A DIAMOND - A CASE STUDY')
fig.show()

我们绘制并了解一下目标变量Price的分布。

# 绘制灰度图查看分布
fig = px.histogram(data, x=["Price"], template = 'plotly_dark', title = 'Histogram of Price')
fig.show()

可以从上图看出Price是明显右偏分布的,对于有偏的分布,我们可以做一些数据变换以调整数据分布,比如对数变换,下面我们先用对数变换对Price进行处理。

import numpy as np# 构建一份数据备份
data_copy = data.copy()# log对数变换
data_copy['Log_Price'] = np.log(data['Price'])# 绘制灰度图查看分布
fig = px.histogram(data_copy, x=["Log_Price"], title = 'Histgram of Log Price', template = 'plotly_dark')fig.show()

大家可以明显看到,经过log变换后的数据分布,更加接近正态分布。

💡 数据准备

我们先导入PyCaret工具库,并做基本的设置。

# 初始化
from pycaret.regression import *
s = setup(data, target = 'Price', transform_target = True)

注意上面的 transform_target = True,PyCaret会对Price字段使用 box-cox 变换,这个变换与对数转换是类似的,也能对有偏分布进行校正。

💡 模型选择&训练&调优

数据准备完毕后,我们使用模型对其进行训练,pycaret中最简单的方式是使用 compare_models函数,它使用交叉验证来训练和评估模型库中可用的模型,它的返回值是具有平均交叉验证分数的评分网格。 这个过程只需要下列简单代码:

# 对所有可用模型进行实验和评估
best = compare_models()

上图是最终的实验结果,我们可以看到,对所有模型使用平均绝对误差 (MAE) 评估,CatBoost Regressor模型有最好的效果。

# 训练模型的预估结果残差
plot_model(best, plot = 'residuals_interactive')
# 输出特征重要度
plot_model(best, plot = 'feature')

💡 模型保存

我们把最优模型保存为 pickle 文件。

# 最佳模型
final_best = finalize_model(best)# 存储模型
save_model(final_best, 'diamond-pipeline')

💡 模型部署

下面我们演示使用FastAPI框架快速构建模型服务,并提供实时预估的能力。

# 导入工具库
import pandas as pd
from pycaret.regression import load_model, predict_model
from fastapi import FastAPI
import uvicorn# 构建app对象
app = FastAPI()# 加载模型
model = load_model('diamond-pipeline')# 定义预估函数
@app.post('/predict')
def predict(carat_weight, cut, color, clarity, polish, symmetry, report):data = pd.DataFrame([[carat_weight, cut, color, clarity, polish, symmetry, report]])data.columns = ['Carat Weight', 'Cut', 'Color', 'Clarity', 'Polish', 'Symmetry', 'Report']predictions = predict_model(model, data=data) return {'prediction': int(predictions['Label'][0])}if __name__ == '__main__':uvicorn.run(app, host='127.0.0.1', port=8000)

接下来可以通过终端命令行运行以下命令来运行这个服务,大家确保运行命令的路径和上述python脚本和以及模型存储pickle文件在同一位置。

uvicorn main:app --reload

命令执行完后,我们就在 localhost 上初始化 API 服务了,大家在浏览器上输入 http://localhost:8000/docs ,会显示如下内容:

点击页面中绿色的 POST 按钮,它将打开一个像这样的表单:

点击右上角的『Try it out』 ,在表单填入一些值,然后点击『Execute』,我们会看到以下响应:

我们可以使用 python 的 requests 库测试一下,远程发起请求是否可以得到结果,如下图所示:

大家可以看看,我们通过传参的方式对模型服务发起请求,并得到返回结果。

参考资料

  • 🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [13] 钻石价格预测的ML全流程!从模型构建调优道部署应用! 『** pycaret-master 数据集**』
  • ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub
  • 📘 PyCaret GitHub:https://www.github.com/pycaret/pycaret
  • 📘 FastAPI GitHub:https://github.com/tiangolo/fastapi
  • 📘 哈佛商学院 Sarah Gets a Diamond:https://hbsp.harvard.edu/product/UV0869-PDF-ENG

这篇关于钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616699

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基