transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理

本文主要是介绍transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 读取数据+ 轨迹数据质量分析

这一部分和

transbigdata笔记:data_summary 轨迹数据质量/采样间隔分析-CSDN博客 的举例是一样的

import pandas as pd
import geopandas as gpd
import transbigdata as tbddata = pd.read_csv('Downloads/TaxiData-Sample.csv', names=['VehicleNum', 'Time', 'Lng', 'Lat', 'OpenStatus', 'Speed'])
data

data['Time'] = pd.to_datetime(data['Time'])
data

tbd.data_summary(data,col=['VehicleNum','Time'],show_sample_duration=True)

2 清除冗余点

这一个函数的详细用法可见:transbigdata笔记:数据预处理-CSDN博客

data=tbd.traj_clean_redundant(data,col=['VehicleNum','Time','Lng','Lat'])
data

3 清理不在研究区域的记录

transbigdata 笔记:官方文档案例1(出租车GPS数据处理)-CSDN博客 和这边的是一样的

sz = gpd.read_file('Downloads/sz.json')
sz.plot();

data=tbd.clean_outofshape(data,sz,col=['Lng','Lat'],accuracy=500)
data

4 清理研究区域内的轨迹漂移

transbigdata笔记:清理研究区域内的轨迹漂移-CSDN博客

data=tbd.traj_clean_drift(data,col=['VehicleNum','Time','Lng','Lat'])
data

5 轨迹停止点和行程提取

transbigdata笔记:轨迹停止点和行程提取-CSDN博客

stay,move=tbd.traj_stay_move(data,params,col=['VehicleNum','Time','Lng','Lat'])
stay

停留状态开始时间、对应栅格编号、停留状态结束时间、轨迹所在位置、持续时间


move

 开始栅格、开始位置、结束位置、结束栅格

6 轨迹切片

transbigdata笔记:轨迹切片-CSDN博客

stay_points=tbd.traj_slice(data,stay,traj_col=['VehicleNum','Time'],slice_col=['VehicleNum','stime', 'etime', 'stayid'])
stay_points

move_points=tbd.traj_slice(data,move,traj_col=['VehicleNum','Time'],slice_col=['VehicleNum','stime', 'etime', 'moveid'])
move_points

7 轨迹密集化 

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

move_points_d2=tbd.traj_densify(move_points,col=['moveid','Time','Lng','Lat'],timegap=29)

每timegap秒有一个记录,用pandas的interpolate(method为index)实现

原来采样频率不是timegap的倍数,怎么办呢

move_points_d[move_points_d['moveid']==0.0].head(30)

通过结果(包括源码)可以发现,从move_points的最早的时刻开始,每timegap时刻就会有一条记录,和原先的记录一并存在【换句话说,至多每隔timegap秒都有一个轨迹点】

8 轨迹 稀疏化

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

move_points_s=tbd.traj_sparsify(move_points,col=['moveid','Time','Lng','Lat'],timegap=30,method='subsample')

如果method是subsample,那么选取[t,t+subsample)这个时间段内第一次出现的记录,丢弃其他记录,如果某一个[t,t+subsample)时间段内没有数据,不用补值

如果method是interpolate的,那么就是从最开始的位置开始,每subsample秒 用pandas的interpolate方法插一个值,舍弃所有不在整subsample秒的原始记录

9 轨迹平滑

transbigdata 笔记: 轨迹密集化/稀疏化 & 轨迹平滑-CSDN博客

move_points_smooth=tbd.traj_smooth(move_points,col=['VehicleNum','Time','Lng','Lat'],process_noise_std=0.1,measurement_noise_std=0.1)

这篇关于transbigdata 笔记: 官方文档示例3:车辆轨迹数据处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616483

相关文章

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S