路径规划算法:基于野狗优化的机器人路径规划算法- 附matlab代码

2024-01-17 13:20

本文主要是介绍路径规划算法:基于野狗优化的机器人路径规划算法- 附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

室内环境栅格法建模步骤

1.栅格粒大小的选取

栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。

栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。

2.障碍物栅格确定

当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.

3.未知环境的栅格地图的建立

通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。

备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。

野狗优化算法

非洲野狗主要生活在非洲的干燥草原和半荒漠地带,活跃于草原、稀树草原和幵阔的干燥灌木丛.它们通常群居,领土范围大小在200到2000平方公里之间,通过叫声进行定位.采取群体合作方式猎杀中型有蹄动物,追击时速可达45千米.每个群落大约有40名成员.一般每个群落的成年成员大约是7-15只,由一对首领统治.它们善于协作,合作狩猎时,由雄性首领率领,在领地内游猎.非洲野狗狩猎依赖视觉而非嗅觉,它们发现猎物后会紧紧追逐,直到猎物疲惫不堪.非洲野狗用各种不同的方式进行彼此之间的联系,它们使用气味(嗅觉),声音和姿势(身体语言)进行沟通.它们具有非常强的气味,这样就可以很容易地对远处的其他组成员进行检测.在捕猎时,群体中的非洲野狗通过叫声进行定位.群体成员用发音来帮助协调行动并追踪,其语音特点类似鸟声,是一个不寻常低吼声或唧唧声,直到狩猎成功.非洲猎狗算法(awda)m就是模拟猎狗的这种行为提出的,它以迭代的方式来模拟群体捕猎行为,即寻找最优值.非洲野狗通过初始化猎狗的位置,竞争首领野狗,野狗群协同移动几个步骤来实现求解最优化问题.算法流程图如图1所示

基于野狗优化的机器人路径规划算法基本思想和步骤

  1. 问题建模:将机器人路径规划问题转化为数学模型,定义目标函数和约束条件。目标函数可以是路径长度最短、时间最短、能耗最低等,约束条件可以包括避开障碍物、遵守限制速度等。

  2. 野狗群体初始化:随机生成一定数量的野狗个体,每个个体表示一种路径规划方案。每个个体包含表示路径的一组状态或坐标。

  3. 适应度评估:根据目标函数和约束条件,评估每个野狗个体的适应度,即衡量其路径规划方案的优劣程度。

  4. 野狗移动:根据野狗群体中个体的适应度,通过模拟野狗的行为进行移动。每个野狗个体都会根据当前的位置和适应度,选择移动到下一个位置。

  5. 适应度更新:根据野狗移动后的新位置,重新评估各个个体的适应度,并更新最优路径。

  6. 终止条件:根据预设的终止条件(如达到最大迭代次数、适应度达到要求等),判断是否终止算法。

  7. 最优路径提取:在算法终止后,选择适应度最好的个体作为最优路径规划方案,并提取其中的路径。

  8. 可选的后处理:对最优路径进行后处理,如平滑路径、优化路径等,以得到更优的机器人路径规划结果。

需要注意的是,野狗优化算法中的野狗个体移动过程可以通过调整位置或状态来实现,具体实现方式可以根据具体问题进行设计。此外,优化算法的性能还受到参数设置、种群大小等因素的影响,需要进行合理调整和实验验证。

⛄ 部分代码

%_________________________________________________________________________%%  Dingo Optimization Algorithm (DOA) source code                         %%                                                                         %%  Developed in MATLAB 9.4.0.813654 (R2018a)                              %%                                                                         %%  Author: Dr. Hernan Peraza-Vazquez                                      %%          MTA. Gustavo Echavarria-Castillo                               %%                                                                         %%  e-mail:  hperaza@ipn.mx        gechavarriac1700@alumno.ipn.mx          %%                                                                         %%  Programmer:  Dr. Hernan Peraza-Vazquez                                 %%  Main paper:                                                            %%  A Bio-Inspired Method for Engineering Design Optimization Inspired by  %%  Dingoes Hunting Strategies.                                            %%  Mathematical Problems in Engineering. (2021). Hindawi.                 %                                                      %%  DOI:   doi.org/10.1155/2021/9107547                                    %%_________________________________________________________________________%function [ o ] =  survival_rate(  fit, min, max )    for i=1:size(fit,2)         o(i)= (max-fit(i))/(max-min);    endend%_________________________________________________________________________%%[Improves the algorithm by replacing vectors with low survival value with values generated by Eq.6 ] %[The fitness value is normalized]
%_________________________________________________________________________%%  Dingo Optimization Algorithm (DOA) source code                         %%                                                                         %%  Developed in MATLAB 9.4.0.813654 (R2018a)                              %%                                                                         %%  Author: Dr. Hernan Peraza-Vazquez                                      %%          MTA. Gustavo Echavarria-Castillo                               %%                                                                         %%  e-mail:  hperaza@ipn.mx        gechavarriac1700@alumno.ipn.mx          %%                                                                         %%  Programmer:  Dr. Hernan Peraza-Vazquez                                 %%  Main paper:                                                            %%  A Bio-Inspired Method for Engineering Design Optimization Inspired by  %%  Dingoes Hunting Strategies.                                            %%  Mathematical Problems in Engineering. (2021). Hindawi.                 %                                                      %%  DOI:   doi.org/10.1155/2021/9107547                                    %%_________________________________________________________________________%            function [ vAttack ] = vectorAttack( SearchAgents_no,na )c=1; vAttack=[]; while(c<=na)    idx =round( 1+ (SearchAgents_no-1) * rand());    if ~findrep(idx, vAttack)        vAttack(c) = idx;        c=c+1;    end end%_________________________________________________________________________%%[Used in the Strategy 1: Group Attack, Eq. 2, Section 2.2.1]%

⛄ 运行结果

⛄ 参考文献

[1] 王菁华,张翠敏.智能机器人综合路径规划算法在Matlab中的实现[J].天津工程师范学院学报, 2006, 16(3):4.DOI:10.3969/j.issn.2095-0926.2006.03.012.

[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.

[3] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].​

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于路径规划算法:基于野狗优化的机器人路径规划算法- 附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616182

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表