本文主要是介绍【作业】{r} :自编实现K-Means聚类算法的函数,且画出每一次迭代中每组中心点的变动情况,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
作业要求:
在本节中, 我们想要通过自己编写一个K-Means函数来更加深入的理解K-Means算法的流程. 并且在输出k个中心点位置和k个分组的基础上, 还想在每一次迭代中画出当前中心点的位置, 以便将这个算法动态的展示出来.
↓↓↓ 交作业点击下面链接
链接失效了
附上完整代码
(1)
# 定义函数
my_kmeans = function(data, k, err){# 导入数据dat = as.matrix(data)# 选取k个初始中心idx = sample(1:nrow(data),k)c = matrix(NA, nrow = k, ncol = ncol(dat))for(n in 1:k){c[n,] = dat[idx[n],]}# 保存每次迭代的中心点save = list(c)# 迭代次数count = 0 repeat{# 计算每一个样本对于聚类中心的距离,保存在一个150*k的矩阵中mat = matrix(NA, nrow = nrow(dat), ncol = k)for(i in 1:nrow(dat)){x = dat[i,]for(j in 1:k){mat[i,j] = sqrt(sum((x - c[j,])^2)) }}groups = apply(mat, 1,which.min)cnew = matrix(NA, nrow = k, ncol = ncol(dat))for(n in 1:k){cnew[n,] = apply(dat[groups == n,], 2, mean)}# 终止条件condition = c()for(n in 1:k){condition[n] = sqrt(sum((cnew[n,] - c[n,])^2)) < err}for(n in 1:k){c[n,] = cnew[n,]}save = c(save,list(c))count = count + 1 if( !(F %in% condition) ) break}result = list(groups,c)names(result) = c("Groups","Cluster_centers")return(c(result,list(save,count)))
}
(2)
dat = iris[,1:2] # 数据
k = 3 # 分几类# 引用函数
re = my_kmeans(iris[,1:2], 3, 1e-10)# 提前设置好颜色
## install.packages("RColorBrewer")
library(RColorBrewer)
display.brewer.pal(12,"Paired")
co = brewer.pal(12,"Paired") # 配置的颜色数目不能超过k# 动图展示聚类中心的变化过程
## install.packages("animation")
library(animation)
saveGIF({for(i in c( 0:re[[4]], rep(re[[4]],5) )){ # rep这里是为了让最终的聚类中心停留更长时间# 底图部分plot(x=iris[,1], y=iris[,2], col=re$Groups,xlab='花萼长度', ylab='花萼宽度', asp=1, type="n",main="每次迭代中心点的变化")for(j in 1:k){points(dat[re$Groups == j,][,1:2],col=co[j])}# 变化部分points(re[[3]][[i+1]][,1:2],pch=22,cex=2,col=co[1:k],bg=co[1:k])# 增加部分if(i == re[[4]]){text(7.2,4.5,labels = "聚类中心", cex=1.5)}}}, interval=0.5, ani.width=400, ani.height=400, movie.name="娜可露露.gif"
)
结果展示:
这篇关于【作业】{r} :自编实现K-Means聚类算法的函数,且画出每一次迭代中每组中心点的变动情况的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!