FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析

本文主要是介绍FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkSQL处理如下实时数据需求:
实时聚合不同 类型/账号/发布时间 的各个指标数据,比如:初始化/初始化后删除/初始化后取消/推送/成功/失败 的指标数据。要求实时产出指标数据,数据源是mysql cdc binlog数据。

代码实例

--SET table.exec.state.ttl=86400s; --24 hour,默认: 0 ms
SET table.exec.state.ttl=2592000s; --30 days,默认: 0 ms
--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;CREATE TABLE kafka_table (mid bigint,db string,sch string,tab string,opt string,ts bigint,ddl string,err string,src map<string,string>,cur map<string,string>,cus map<string,string>,account_id AS IF(cur['account_id'] IS NOT NULL , cur['account_id'], src ['account_id']),publish_time AS IF(cur['publish_time'] IS NOT NULL , cur['publish_time'], src ['publish_time']),msg_status AS IF(cur['msg_status'] IS NOT NULL , cur['msg_status'], src ['msg_status']),send_type AS IF(cur['send_type'] IS NOT NULL , cur['send_type'], src ['send_type'])--event_time as cast(IF(cur['update_time'] IS NOT NULL , cur['update_time'], src ['update_time']) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)--WATERMARK FOR event_time AS event_time - INTERVAL '1' MINUTE     --SECOND
) WITH ('connector' = 'kafka','topic' = 't1','properties.bootstrap.servers' = 'xx.xx.xx.xx:9092','properties.group.id' = 'g1','scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset--  'properties.enable.auto.commit',= 'true' -- default:false, 如果为false,则在发生checkpoint时触发offset提交'format' = 'json'
);CREATE TABLE es_sink(send_type      STRING,account_id     STRING,publish_time   STRING,grouping_id       INTEGER,init           INTEGER,init_cancel    INTEGER,push          INTEGER,succ           INTEGER,fail           INTEGER,init_delete    INTEGER,update_time    STRING,PRIMARY KEY (group_id,send_type,account_id,publish_time) NOT ENFORCED
)
with ('connector' = 'elasticsearch-6','index' = 'es_sink','document-type' = 'es_sink','hosts' = 'http://xxx:9200','format' = 'json','filter.null-value'='true','sink.bulk-flush.max-actions' = '1000','sink.bulk-flush.max-size' = '10mb'
);CREATE view  tmp as
selectsend_type,account_id,publish_time,msg_status,case when UPPER(opt) = 'INSERT' and msg_status='0'  then 1 else 0 end AS init,case when UPPER(opt) = 'UPDATE' and send_type='1' and msg_status='4' then 1 else 0 end AS init_cancel,case when UPPER(opt) = 'UPDATE' and msg_status='3' then 1 else 0 end AS push,case when UPPER(opt) = 'UPDATE' and (msg_status='1' or msg_status='5') then 1 else 0 end AS succ,case when UPPER(opt) = 'UPDATE' and (msg_status='2' or msg_status='6') then 1 else 0 end AS fail,case when UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0' then  1 else 0 end AS init_delete,event_time,opt,ts
FROM kafka_table
where (UPPER(opt) = 'INSERT' and msg_status='0' )
or        (UPPER(opt) = 'UPDATE' and msg_status in ('1','2','3','4','5','6'))
or        (UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0');--send_type=1          send_type=0
--初始化->0             初始化->0
--取消->4
--推送->3               推送->3
--成功->1               成功->5
--失败->2               失败->6CREATE view  tmp_groupby as
selectCOALESCE(send_type,'N') AS send_type
,COALESCE(account_id,'N') AS account_id
,COALESCE(publish_time,'N') AS publish_time
,case when send_type is null and account_id is null and publish_time is null then 1when send_type is not null and account_id is null and publish_time is null then 2when send_type is not null and account_id is not null and publish_time is null then 3when send_type is not null and account_id is not null and publish_time is not null then 4end grouping_id
,sum(init) as init
,sum(init_cancel) as init_cancel
,sum(push) as push
,sum(succ) as succ
,sum(fail) as fail
,sum(init_delete) as init_delete
from tmp
--GROUP BY GROUPING SETS ((send_type,account_id,publish_time), (send_type,account_id),(send_type), ())
GROUP BY ROLLUP (send_type,account_id,publish_time); --等同于以上INSERT INTO es_sink
selectsend_type,account_id,publish_time,grouping_id,init,init_cancel,push,succ,fail,init_delete,CAST(LOCALTIMESTAMP AS STRING) as update_time
from tmp_groupby

其他配置

  • flink集群参数
state.backend: rocksdb
state.backend.incremental: true
state.backend.rocksdb.ttl.compaction.filter.enabled: true
state.backend.rocksdb.localdir: /export/io_tmp_dirs/rocksdb
state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
rest.flamegraph.enabled: true
pipeline.operator-chaining: false
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.network.min: 128 mb
taskmanager.memory.network.max: 128 mb
taskmanager.memory.framework.off-heap.size: 32mb
taskmanager.memory.task.off-heap.size: 32mb
taskmanager.memory.jvm-metaspace.size: 256mb
taskmanager.memory.jvm-overhead.fraction: 0.03
  • 检查点配置
    在这里插入图片描述

  • job运行资源
    管理节点(JM) 1 个, 节点规格 1 核 4 GB内存, 磁盘 10Gi
    运行节点(TM)10 个, 节点规格 1 核 4 GB内存, 磁盘 80Gi
    单TM槽位数(Slot): 1
    默认并行度:8

  • es mapping

#POST app_cust_syyy_private_domain_syyy_group_msg/app_cust_syyy_private_domain_syyy_group_msg/_mapping
{"app_cust_syyy_private_domain_syyy_group_msg": {"properties": {"send_type": {"type": "keyword","ignore_above": 256},"account_id": {"type": "keyword"},"publish_time": {"type": "keyword","fields": {"text": {"type": "keyword"},"date": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis","ignore_malformed":"true" # 忽略错误的各式}}},"grouping_id": {"type": "integer"},"init": {"type": "integer"},"init_cancel": {"type": "integer"},"query": {"type": "integer"},"succ": {"type": "integer"},"fail": {"type": "integer"},"init_delete": {"type": "integer"},"update_time": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"}}}
}

性能调优

是否开启【MiniBatch 聚合】和【Local-Global 聚合】对分组聚合场景影响巨大,尤其是在数据量大的场景下。

  • 如果未开启,在分组聚合,数据更新状态时,每条数据都会触发聚合运算,进而更新StateBackend (尤其是对于 RocksDB StateBackend,火焰图上反映就是一直在update rocksdb),造成上游算子背压特别大。此外,生产中非常常见的数据倾斜会使这个问题恶化,并且容易导致 job 发生反压。
    在这里插入图片描述

  • 在开启【MiniBatch 聚合】和【Local-Global 聚合】后,配置如下:

--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;

开启配置好会在DAG上添加两个环节MiniBatchAssignerLocalGroupAggregate
在这里插入图片描述

对结果的影响

开启了【MiniBatch 聚合】和【Local-Global 聚合】后,一天处理不完的数据,在10分钟内处理完毕

输出结果

在这里插入图片描述在这里插入图片描述

参考:
Group Aggregation
Streaming Aggregation Performance Tuning

这篇关于FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615331

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案

《Vue3组件中getCurrentInstance()获取App实例,但是返回null的解决方案》:本文主要介绍Vue3组件中getCurrentInstance()获取App实例,但是返回nu... 目录vue3组件中getCurrentInstajavascriptnce()获取App实例,但是返回n

SQL表间关联查询实例详解

《SQL表间关联查询实例详解》本文主要讲解SQL语句中常用的表间关联查询方式,包括:左连接(leftjoin)、右连接(rightjoin)、全连接(fulljoin)、内连接(innerjoin)、... 目录简介样例准备左外连接右外连接全外连接内连接交叉连接自然连接简介本文主要讲解SQL语句中常用的表

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle