FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析

本文主要是介绍FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkSQL处理如下实时数据需求:
实时聚合不同 类型/账号/发布时间 的各个指标数据,比如:初始化/初始化后删除/初始化后取消/推送/成功/失败 的指标数据。要求实时产出指标数据,数据源是mysql cdc binlog数据。

代码实例

--SET table.exec.state.ttl=86400s; --24 hour,默认: 0 ms
SET table.exec.state.ttl=2592000s; --30 days,默认: 0 ms
--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;CREATE TABLE kafka_table (mid bigint,db string,sch string,tab string,opt string,ts bigint,ddl string,err string,src map<string,string>,cur map<string,string>,cus map<string,string>,account_id AS IF(cur['account_id'] IS NOT NULL , cur['account_id'], src ['account_id']),publish_time AS IF(cur['publish_time'] IS NOT NULL , cur['publish_time'], src ['publish_time']),msg_status AS IF(cur['msg_status'] IS NOT NULL , cur['msg_status'], src ['msg_status']),send_type AS IF(cur['send_type'] IS NOT NULL , cur['send_type'], src ['send_type'])--event_time as cast(IF(cur['update_time'] IS NOT NULL , cur['update_time'], src ['update_time']) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)--WATERMARK FOR event_time AS event_time - INTERVAL '1' MINUTE     --SECOND
) WITH ('connector' = 'kafka','topic' = 't1','properties.bootstrap.servers' = 'xx.xx.xx.xx:9092','properties.group.id' = 'g1','scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset--  'properties.enable.auto.commit',= 'true' -- default:false, 如果为false,则在发生checkpoint时触发offset提交'format' = 'json'
);CREATE TABLE es_sink(send_type      STRING,account_id     STRING,publish_time   STRING,grouping_id       INTEGER,init           INTEGER,init_cancel    INTEGER,push          INTEGER,succ           INTEGER,fail           INTEGER,init_delete    INTEGER,update_time    STRING,PRIMARY KEY (group_id,send_type,account_id,publish_time) NOT ENFORCED
)
with ('connector' = 'elasticsearch-6','index' = 'es_sink','document-type' = 'es_sink','hosts' = 'http://xxx:9200','format' = 'json','filter.null-value'='true','sink.bulk-flush.max-actions' = '1000','sink.bulk-flush.max-size' = '10mb'
);CREATE view  tmp as
selectsend_type,account_id,publish_time,msg_status,case when UPPER(opt) = 'INSERT' and msg_status='0'  then 1 else 0 end AS init,case when UPPER(opt) = 'UPDATE' and send_type='1' and msg_status='4' then 1 else 0 end AS init_cancel,case when UPPER(opt) = 'UPDATE' and msg_status='3' then 1 else 0 end AS push,case when UPPER(opt) = 'UPDATE' and (msg_status='1' or msg_status='5') then 1 else 0 end AS succ,case when UPPER(opt) = 'UPDATE' and (msg_status='2' or msg_status='6') then 1 else 0 end AS fail,case when UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0' then  1 else 0 end AS init_delete,event_time,opt,ts
FROM kafka_table
where (UPPER(opt) = 'INSERT' and msg_status='0' )
or        (UPPER(opt) = 'UPDATE' and msg_status in ('1','2','3','4','5','6'))
or        (UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0');--send_type=1          send_type=0
--初始化->0             初始化->0
--取消->4
--推送->3               推送->3
--成功->1               成功->5
--失败->2               失败->6CREATE view  tmp_groupby as
selectCOALESCE(send_type,'N') AS send_type
,COALESCE(account_id,'N') AS account_id
,COALESCE(publish_time,'N') AS publish_time
,case when send_type is null and account_id is null and publish_time is null then 1when send_type is not null and account_id is null and publish_time is null then 2when send_type is not null and account_id is not null and publish_time is null then 3when send_type is not null and account_id is not null and publish_time is not null then 4end grouping_id
,sum(init) as init
,sum(init_cancel) as init_cancel
,sum(push) as push
,sum(succ) as succ
,sum(fail) as fail
,sum(init_delete) as init_delete
from tmp
--GROUP BY GROUPING SETS ((send_type,account_id,publish_time), (send_type,account_id),(send_type), ())
GROUP BY ROLLUP (send_type,account_id,publish_time); --等同于以上INSERT INTO es_sink
selectsend_type,account_id,publish_time,grouping_id,init,init_cancel,push,succ,fail,init_delete,CAST(LOCALTIMESTAMP AS STRING) as update_time
from tmp_groupby

其他配置

  • flink集群参数
state.backend: rocksdb
state.backend.incremental: true
state.backend.rocksdb.ttl.compaction.filter.enabled: true
state.backend.rocksdb.localdir: /export/io_tmp_dirs/rocksdb
state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
rest.flamegraph.enabled: true
pipeline.operator-chaining: false
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.network.min: 128 mb
taskmanager.memory.network.max: 128 mb
taskmanager.memory.framework.off-heap.size: 32mb
taskmanager.memory.task.off-heap.size: 32mb
taskmanager.memory.jvm-metaspace.size: 256mb
taskmanager.memory.jvm-overhead.fraction: 0.03
  • 检查点配置
    在这里插入图片描述

  • job运行资源
    管理节点(JM) 1 个, 节点规格 1 核 4 GB内存, 磁盘 10Gi
    运行节点(TM)10 个, 节点规格 1 核 4 GB内存, 磁盘 80Gi
    单TM槽位数(Slot): 1
    默认并行度:8

  • es mapping

#POST app_cust_syyy_private_domain_syyy_group_msg/app_cust_syyy_private_domain_syyy_group_msg/_mapping
{"app_cust_syyy_private_domain_syyy_group_msg": {"properties": {"send_type": {"type": "keyword","ignore_above": 256},"account_id": {"type": "keyword"},"publish_time": {"type": "keyword","fields": {"text": {"type": "keyword"},"date": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis","ignore_malformed":"true" # 忽略错误的各式}}},"grouping_id": {"type": "integer"},"init": {"type": "integer"},"init_cancel": {"type": "integer"},"query": {"type": "integer"},"succ": {"type": "integer"},"fail": {"type": "integer"},"init_delete": {"type": "integer"},"update_time": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"}}}
}

性能调优

是否开启【MiniBatch 聚合】和【Local-Global 聚合】对分组聚合场景影响巨大,尤其是在数据量大的场景下。

  • 如果未开启,在分组聚合,数据更新状态时,每条数据都会触发聚合运算,进而更新StateBackend (尤其是对于 RocksDB StateBackend,火焰图上反映就是一直在update rocksdb),造成上游算子背压特别大。此外,生产中非常常见的数据倾斜会使这个问题恶化,并且容易导致 job 发生反压。
    在这里插入图片描述

  • 在开启【MiniBatch 聚合】和【Local-Global 聚合】后,配置如下:

--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;

开启配置好会在DAG上添加两个环节MiniBatchAssignerLocalGroupAggregate
在这里插入图片描述

对结果的影响

开启了【MiniBatch 聚合】和【Local-Global 聚合】后,一天处理不完的数据,在10分钟内处理完毕

输出结果

在这里插入图片描述在这里插入图片描述

参考:
Group Aggregation
Streaming Aggregation Performance Tuning

这篇关于FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615331

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#