FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析

本文主要是介绍FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

FlinkSQL处理如下实时数据需求:
实时聚合不同 类型/账号/发布时间 的各个指标数据,比如:初始化/初始化后删除/初始化后取消/推送/成功/失败 的指标数据。要求实时产出指标数据,数据源是mysql cdc binlog数据。

代码实例

--SET table.exec.state.ttl=86400s; --24 hour,默认: 0 ms
SET table.exec.state.ttl=2592000s; --30 days,默认: 0 ms
--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;CREATE TABLE kafka_table (mid bigint,db string,sch string,tab string,opt string,ts bigint,ddl string,err string,src map<string,string>,cur map<string,string>,cus map<string,string>,account_id AS IF(cur['account_id'] IS NOT NULL , cur['account_id'], src ['account_id']),publish_time AS IF(cur['publish_time'] IS NOT NULL , cur['publish_time'], src ['publish_time']),msg_status AS IF(cur['msg_status'] IS NOT NULL , cur['msg_status'], src ['msg_status']),send_type AS IF(cur['send_type'] IS NOT NULL , cur['send_type'], src ['send_type'])--event_time as cast(IF(cur['update_time'] IS NOT NULL , cur['update_time'], src ['update_time']) AS TIMESTAMP(3)), -- TIMESTAMP(3)/TIMESTAMP_LTZ(3)--WATERMARK FOR event_time AS event_time - INTERVAL '1' MINUTE     --SECOND
) WITH ('connector' = 'kafka','topic' = 't1','properties.bootstrap.servers' = 'xx.xx.xx.xx:9092','properties.group.id' = 'g1','scan.startup.mode' = 'earliest-offset',  --group-offsets/earliest-offset/latest-offset--  'properties.enable.auto.commit',= 'true' -- default:false, 如果为false,则在发生checkpoint时触发offset提交'format' = 'json'
);CREATE TABLE es_sink(send_type      STRING,account_id     STRING,publish_time   STRING,grouping_id       INTEGER,init           INTEGER,init_cancel    INTEGER,push          INTEGER,succ           INTEGER,fail           INTEGER,init_delete    INTEGER,update_time    STRING,PRIMARY KEY (group_id,send_type,account_id,publish_time) NOT ENFORCED
)
with ('connector' = 'elasticsearch-6','index' = 'es_sink','document-type' = 'es_sink','hosts' = 'http://xxx:9200','format' = 'json','filter.null-value'='true','sink.bulk-flush.max-actions' = '1000','sink.bulk-flush.max-size' = '10mb'
);CREATE view  tmp as
selectsend_type,account_id,publish_time,msg_status,case when UPPER(opt) = 'INSERT' and msg_status='0'  then 1 else 0 end AS init,case when UPPER(opt) = 'UPDATE' and send_type='1' and msg_status='4' then 1 else 0 end AS init_cancel,case when UPPER(opt) = 'UPDATE' and msg_status='3' then 1 else 0 end AS push,case when UPPER(opt) = 'UPDATE' and (msg_status='1' or msg_status='5') then 1 else 0 end AS succ,case when UPPER(opt) = 'UPDATE' and (msg_status='2' or msg_status='6') then 1 else 0 end AS fail,case when UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0' then  1 else 0 end AS init_delete,event_time,opt,ts
FROM kafka_table
where (UPPER(opt) = 'INSERT' and msg_status='0' )
or        (UPPER(opt) = 'UPDATE' and msg_status in ('1','2','3','4','5','6'))
or        (UPPER(opt) = 'DELETE' and send_type='1' and msg_status='0');--send_type=1          send_type=0
--初始化->0             初始化->0
--取消->4
--推送->3               推送->3
--成功->1               成功->5
--失败->2               失败->6CREATE view  tmp_groupby as
selectCOALESCE(send_type,'N') AS send_type
,COALESCE(account_id,'N') AS account_id
,COALESCE(publish_time,'N') AS publish_time
,case when send_type is null and account_id is null and publish_time is null then 1when send_type is not null and account_id is null and publish_time is null then 2when send_type is not null and account_id is not null and publish_time is null then 3when send_type is not null and account_id is not null and publish_time is not null then 4end grouping_id
,sum(init) as init
,sum(init_cancel) as init_cancel
,sum(push) as push
,sum(succ) as succ
,sum(fail) as fail
,sum(init_delete) as init_delete
from tmp
--GROUP BY GROUPING SETS ((send_type,account_id,publish_time), (send_type,account_id),(send_type), ())
GROUP BY ROLLUP (send_type,account_id,publish_time); --等同于以上INSERT INTO es_sink
selectsend_type,account_id,publish_time,grouping_id,init,init_cancel,push,succ,fail,init_delete,CAST(LOCALTIMESTAMP AS STRING) as update_time
from tmp_groupby

其他配置

  • flink集群参数
state.backend: rocksdb
state.backend.incremental: true
state.backend.rocksdb.ttl.compaction.filter.enabled: true
state.backend.rocksdb.localdir: /export/io_tmp_dirs/rocksdb
state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
rest.flamegraph.enabled: true
pipeline.operator-chaining: false
taskmanager.memory.managed.fraction: 0.7
taskmanager.memory.network.min: 128 mb
taskmanager.memory.network.max: 128 mb
taskmanager.memory.framework.off-heap.size: 32mb
taskmanager.memory.task.off-heap.size: 32mb
taskmanager.memory.jvm-metaspace.size: 256mb
taskmanager.memory.jvm-overhead.fraction: 0.03
  • 检查点配置
    在这里插入图片描述

  • job运行资源
    管理节点(JM) 1 个, 节点规格 1 核 4 GB内存, 磁盘 10Gi
    运行节点(TM)10 个, 节点规格 1 核 4 GB内存, 磁盘 80Gi
    单TM槽位数(Slot): 1
    默认并行度:8

  • es mapping

#POST app_cust_syyy_private_domain_syyy_group_msg/app_cust_syyy_private_domain_syyy_group_msg/_mapping
{"app_cust_syyy_private_domain_syyy_group_msg": {"properties": {"send_type": {"type": "keyword","ignore_above": 256},"account_id": {"type": "keyword"},"publish_time": {"type": "keyword","fields": {"text": {"type": "keyword"},"date": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis","ignore_malformed":"true" # 忽略错误的各式}}},"grouping_id": {"type": "integer"},"init": {"type": "integer"},"init_cancel": {"type": "integer"},"query": {"type": "integer"},"succ": {"type": "integer"},"fail": {"type": "integer"},"init_delete": {"type": "integer"},"update_time": {"type": "date","format": "yyyy-MM-dd HH:mm:ss.SSS||yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"}}}
}

性能调优

是否开启【MiniBatch 聚合】和【Local-Global 聚合】对分组聚合场景影响巨大,尤其是在数据量大的场景下。

  • 如果未开启,在分组聚合,数据更新状态时,每条数据都会触发聚合运算,进而更新StateBackend (尤其是对于 RocksDB StateBackend,火焰图上反映就是一直在update rocksdb),造成上游算子背压特别大。此外,生产中非常常见的数据倾斜会使这个问题恶化,并且容易导致 job 发生反压。
    在这里插入图片描述

  • 在开启【MiniBatch 聚合】和【Local-Global 聚合】后,配置如下:

--MiniBatch 聚合
SET table.exec.mini-batch.enabled = true;
SET table.exec.mini-batch.allow-latency = 1s;
SET table.exec.mini-batch.size = 10000;
--Local-Global 聚合
SET table.optimizer.agg-phase-strategy = TWO_PHASE;

开启配置好会在DAG上添加两个环节MiniBatchAssignerLocalGroupAggregate
在这里插入图片描述

对结果的影响

开启了【MiniBatch 聚合】和【Local-Global 聚合】后,一天处理不完的数据,在10分钟内处理完毕

输出结果

在这里插入图片描述在这里插入图片描述

参考:
Group Aggregation
Streaming Aggregation Performance Tuning

这篇关于FlinkSQL【分组聚合-多维分析-性能调优】应用实例分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615331

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

java向微信服务号发送消息的完整步骤实例

《java向微信服务号发送消息的完整步骤实例》:本文主要介绍java向微信服务号发送消息的相关资料,包括申请测试号获取appID/appsecret、关注公众号获取openID、配置消息模板及代码... 目录步骤1. 申请测试系统2. 公众号账号信息3. 关注测试号二维码4. 消息模板接口5. Java测试

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重