R语言-评分卡模型验证(ROC,KS,AIC,BIC)

2024-01-17 07:30

本文主要是介绍R语言-评分卡模型验证(ROC,KS,AIC,BIC),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文主要记录几种常用的模型检验方法,重点在R语言的使用上,暂时不包括检验方法的原理。博主刚开始使用R语言不久,因此也借此机会整理记录自己的学习过程。如有不当,欢迎指正。


1. ROC与AUC,基尼系数


混淆矩阵Confusion Matirx

计算ROC之前先介绍如何计算混淆矩阵Confusion Matrix

1.可以用table(pre, test$label)

2.caret包里的confusionMatrix(data, reference)

ROC 和AUC

用pROC包的roc函数

# validate
library(pROC)  # roc
modelroc <- roc(test$label,pre)
modelauc<- auc(modelroc) # calculate area under the curve
plot(modelroc, print.auc=TRUE, auc.polygon=TRUE, grid=c(0.1, 0.2),
grid.col=c("green", "red"), max.auc.polygon=TRUE,
auc.polygon.col="skyblue", print.thres=TRUE) # draw roc
Gini <- 2*modelauc-1

基尼系数Gini Index

基尼系数最开始为经济学指标,判断一个群体收入分配的均匀程度,基尼系数越大,说明收入分配越不均匀。国际上通常把0.4作为警戒线,当大于0.4时易出现社会动荡。

在分类模型中,基尼系数衡量的是好坏样本的均匀程度,Gini系数越大越不均匀,也意味着好坏样本分得越开,这是我们想要的。Gini系数与AUC存在如下关系:

Gini=2AUC-1

代码可直接利用pROC包计算的auc值代入公式计算gini系数,见roc代码片断。


2.KS曲线及KS值

myKS <- function(pre,label){true <- sum(label)false <- length(label)-truetpr <- NULLfpr <- NULLo_pre <- pre[order(pre)] # let the threshold in an order from small to largefor (i in o_pre){tp <- sum((pre >= i) & label)tpr <- c(tpr,tp/true)fp <- sum((pre >= i) & (1-label))fpr <- c(fpr,fp/false)}plot(o_pre,tpr,type = "l",col= "green",xlab="threshold",ylab="tpr,fpr")lines(o_pre,fpr,type="l", col = "red")KSvalue <- max(tpr-fpr)sub = paste("KS value =",KSvalue)title(sub=sub)cutpoint <- which(tpr-fpr==KSvalue)thre <- o_pre[cutpoint]lines(c(thre,thre),c(fpr[cutpoint],tpr[cutpoint]),col = "blue")cat("KS-value:",KSvalue)
}
引用自编函数myKS:

myKS(pre, test$label)


3.AIC赤池信息量准则

赤池信息量准则 (Akaike Information Criterion ( AIC ))是衡量统计模型拟合优良性的一种标准,常用与最大似然估计。AIC定量地定义了测试模型,但是如果所有的模型都不能很好的表示测试数据。AIC计算了给定模型和真实模型之间的KL值。 以下引自百度百科


AIC=2k-2ln(L)
它的假设条件是模型的误差服从独立正态分布。
其中:k是所拟合模型中参数的数量,ln(L)是对数似然值
AIC的大小取决于L和k。k取值越小,AIC越小;L取值越大,AIC值越小。k小意味着模型简洁,L大意味着模型精确。因此AIC和修正的决定系数类似,在评价模型是兼顾了简洁性和精确性。
假设条件是模型的误差服从独立正态分布。 让n为观察数,SSR(SUM SQAURE OF RESIDUE)为残差平方和,那么AIC变为:
AIC=2k+nln(SSR/n)

4.BIC(SBC,SIC)

Schwarz's Bayesian Criterion,贝叶斯信息准则

BIC = -2lnL + plnn

lnL:最大对数你似然值

p:参数个数

n:样本量


5.PSI群体稳定性指标

PSI(population stability index)





这篇关于R语言-评分卡模型验证(ROC,KS,AIC,BIC)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615285

相关文章

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi