PPO 跑CartPole-v1

2024-01-16 20:44
文章标签 v1 ppo cartpole

本文主要是介绍PPO 跑CartPole-v1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

gym-0.26.2
cartPole-v1

参考动手学强化学习书中的代码,并做了一些修改

代码

import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdmclass PolicyNet(nn.Module):def __init__(self, state_dim, hidden_dim, action_dim):super().__init__()self.fc1 = nn.Linear(state_dim, hidden_dim)self.fc2 = nn.Linear(hidden_dim, action_dim)def forward(self, x):x = F.relu(self.fc1(x))return F.softmax(self.fc2(x), dim=1)class ValueNet(nn.Module):def __init__(self, state_dim, hidden_dim):super().__init__()self.fc1 = nn.Linear(state_dim, hidden_dim)self.fc2 = nn.Linear(hidden_dim, 1)def forward(self, x):x = F.relu(self.fc1(x))return self.fc2(x)class PPO:"""PPO算法,采用截断的方式"""def __init__(self, state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, epochs, eps, gamma, device):self.actor = PolicyNet(state_dim, hidden_dim, action_dim).to(device)self.critic = ValueNet(state_dim, hidden_dim).to(device)self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)self.gamma = gammaself.lmbda = lmbdaself.epochs = epochs    # 一条序列的数据用来训练轮数self.eps = eps  # PPO 中阶段范围的参数self.device = devicedef take_action(self, state):state = torch.FloatTensor([state]).to(self.device)probs = self.actor(state)action_dist = torch.distributions.Categorical(probs)action = action_dist.sample()return action.item()def gae(self, td_delta):td_delta = td_delta.detach().numpy()advantages_list = []advantage = 0.0for delta in td_delta[::-1]:advantage = self.gamma * self.lmbda * advantage + deltaadvantages_list.append(advantage)advantages_list.reverse()return torch.FloatTensor(advantages_list)def update(self, transition_dist):states = torch.FloatTensor(transition_dist['states']).to(self.device)actions = torch.tensor(transition_dist['actions']).reshape((-1, 1)).to(self.device)rewards = torch.FloatTensor(transition_dist['rewards']).reshape((-1, 1)).to(self.device)next_states = torch.FloatTensor(transition_dist['next_states']).to(self.device)dones = torch.FloatTensor(transition_dist['dones']).reshape((-1, 1)).to(self.device)td_target = rewards + self.gamma * self.critic(next_states) * (1 - dones)td_delta = td_target - self.critic(states)# GAE 计算广义优势advantage = self.gae(td_delta.cpu()).to(self.device)old_log_probs = torch.log(self.actor(states).gather(1, actions)).detach()for _ in range(self.epochs):log_probs = torch.log(self.actor(states).gather(1, actions))ration = torch.exp(log_probs - old_log_probs)surr1 = ration * advantagesurr2 = torch.clamp(ration, 1-self.eps, 1+self.eps) * advantage # 截断actor_loss = torch.mean(-torch.min(surr1, surr2))   # PPO损失函数critic_loss = torch.mean(F.mse_loss(self.critic(states), td_target.detach()))self.actor_optimizer.zero_grad()self.critic_optimizer.zero_grad()actor_loss.backward()critic_loss.backward()self.actor_optimizer.step()self.critic_optimizer.step()def moving_average(a, window_size):cumulative_sum = np.cumsum(np.insert(a, 0, 0))middle = (cumulative_sum[window_size:] - cumulative_sum[:-window_size]) / window_sizer = np.arange(1, window_size-1, 2)begin = np.cumsum(a[:window_size-1])[::2] / rend = (np.cumsum(a[:-window_size:-1])[::2] / r)[::-1]return np.concatenate((begin, middle, end))def train():actor_lr = 1e-3critic_lr = 1e-2num_episodes = 500hidden_dim = 128gamma = 0.98lmbda = 0.95epochs = 10eps = 0.2device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")env_name = "CartPole-v1"env = gym.make(env_name)torch.manual_seed(0)state_dim = env.observation_space.shape[0]action_dim = env.action_space.nagent = PPO(state_dim, hidden_dim, action_dim, actor_lr, critic_lr, lmbda, epochs, eps, gamma, device)return_list = []for i in range(10):with tqdm(total=int(num_episodes / 10), desc='Iteration %d' % i) as pbar:for i_episode in range(int(num_episodes / 10)):episode_return = 0transition_dict = {'states': [], 'actions': [], 'next_states': [], 'rewards': [], 'dones': []}state, _ = env.reset()done, truncated = False, Falsewhile not done and not truncated:action = agent.take_action(state)next_state, reward, done, truncated, _ = env.step(action)done = done or truncated    # 这个地方要注意transition_dict['states'].append(state)transition_dict['actions'].append(action)transition_dict['next_states'].append(next_state)transition_dict['rewards'].append(reward)transition_dict['dones'].append(done)state = next_stateepisode_return += rewardreturn_list.append(episode_return)agent.update(transition_dict)if (i_episode + 1) % 10 == 0:pbar.set_postfix({'episode': '%d' % (num_episodes / 10 * i + i_episode + 1),'return': '%.3f' % np.mean(return_list[-10:])})pbar.update(1)episodes_list = list(range(len(return_list)))plt.plot(episodes_list, return_list)plt.xlabel('Episodes')plt.ylabel('Returns')plt.title(f'PPO on {env_name}')plt.show()mv_return = moving_average(return_list, 9)plt.plot(episodes_list, mv_return)plt.xlabel('Episodes')plt.ylabel('Returns')plt.title(f'PPO on {env_name}')plt.show()if __name__ == '__main__':train()

pycharm中运行结果:

效果看起很好。

这篇关于PPO 跑CartPole-v1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613841

相关文章

TokuDB7.5.7-2.4.1使用TokuDB时的内存注意事项v1

tokudb_cache_size指定TokuDB自己的cache大小,该值默认会为50%的RAM(?TokuDB will allocate 50% of the installed RAM for its own cache)。在如下集中情况,需要手动配置tokudb_cache_size的值: 1 TokuDB和其他占内存型的任务一起跑在同一台机器上 一个保收的配置是其他所有任务都在运行

TokuDB7.5.7-2.1使用TokuDB的系统和硬件需求v1

1 操作系统需求 TokuDB到目前位置只支持64位的Linux系统(所以现在不支持在window上编译运行) 2 硬件需求 内存:至少1G;如果想较好性能,建议2G以上。 外存:建议为数据目录(tokudb_data_dir)和日志目录(tokudb_log_dir)配置足够大的存储空间。

MySQL变量-binlog_format:决定binlog的存储格式v1

1 global和session都可 2 三个值: STATEMENT:sql语句的格式 ROW:具体数据行记录的格式 MIXED:混合格式

RLHF PPO DPO

生成式大模型的RLHF技术(一):基础​​​​​​​ DPO: Direct Preference Optimization 论文解读及代码实践 深入对比 DPO 和 RLHF 深入理解DPO(Direct Preference Optimization)算法

强化学习-优化策略算法(DPO和PPO)

DPO(Direct Preference Optimization)和 PPO(Proximal Policy Optimization)虽然都是用于优化策略的算法,但它们在理论基础、优化目标和应用场景上存在显著区别。 优化目标 • PPO: • PPO 是一种基于策略梯度的优化算法,其目标是通过最大化累积奖励来优化策略。PPO 通过限制策略更新的幅度(剪切损失函数),确保训练过程中的策略更

爆改YOLOv8|利用全新的聚焦式线性注意力模块Focused Linear Attention 改进yolov8(v1)

1,本文介绍 全新的聚焦线性注意力模块(Focused Linear Attention)是一种旨在提高计算效率和准确性的注意力机制。传统的自注意力机制在处理长序列数据时通常计算复杂度较高,限制了其在大规模数据上的应用。聚焦线性注意力模块则通过优化注意力计算的方式,显著降低了计算复杂度。 核心特点: 线性时间复杂度:与传统的自注意力机制不同,聚焦线性注意力模块采用了线性时间复杂度的计算方法

docker pull报错: Error response from daemon: Get https://../v1/_ping: http: server gave HTTP response

问题描述,安装好docker私有库之后,不管是从私有库pull还是push,都会报错: Error response from daemon: Get https://xxx.xxx.xxx.xxx:5000/v1/_ping: http: server gave HTTP response to HTTPS client 原因是由于客户端采用https,docker registry未采用h

大模型对齐:DPO vs PPO

现在这些大型语言模型(LLMs),可真是火得不行,各行各业都离不开它们了。它们能处理和写出跟我们差不多的文本,这让自然语言处理、写东西、还有客服这些领域都焕然一新。不过呢,这技术进步的同时也带来了一个大问题,就是怎么让这些模型跟我们人类的想法和价值观保持一致。要是没搞定这个对齐问题,这些模型搞不好就会写出一些伤人的、有偏见的或者让人误解的内容来。 咱们来聊聊怎么让这些大型语言模型更好地符合我们人

CV-笔记-重读YOLO目标检测系列 v1

目录 如何检测定义label训练的时候损失函数缺点引用 将对象检测定义为一个回归问题,回归到空间分离的边界框和相关的类概率。与最先进的检测系统相比,YOLO会产生更多的定位错误,但不太可能预测背景上的误报less likely to predict false positives on background(假阳少)都看做一个回归问题,所以不需要复杂的pipeline。titan

ModuleNotFoundError: No module named ‘transformers_modules.chatglm-6b-v1‘

ModuleNotFoundError: No module named 'transformers_modules.chatglm-6b-v1'  欢迎来到英杰社区https://bbs.csdn.net/topics/617804998          欢迎来到我的主页,我是博主英杰,211科班出身,就职于医疗科技公司,