java数据结构与算法刷题-----LeetCode96. 不同的二叉搜索树

2024-01-16 20:12

本文主要是介绍java数据结构与算法刷题-----LeetCode96. 不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完):https://blog.csdn.net/grd_java/article/details/123063846

很多人觉得动态规划很难,但它就是固定套路而已。其实动态规划只不过是将多余的步骤,提前放到dp数组中(就是一个数组,只不过大家都叫它dp),达到空间换时间的效果。它仅仅只是一种优化思路,因此它目前的境地和线性代数一样----虚假的难。

  1. 想想线性代数,在国外留学的学生大多数不觉得线性代数难理解。但是中国的学生学习线性代数时,完全摸不着头脑,一上来就是行列式和矩阵,根本不知道这玩意是干嘛的。
  2. 线性代数从根本上是在空间上研究向量,抽象上研究线性关系的学科。人家国外的教科书都是第一讲就帮助大家理解研究向量和线性关系。
  3. 反观国内的教材,直接把行列式搞到第一章。搞的国内的学生在学习线性代数的时候,只会觉得一知半解,觉得麻烦,完全不知道这玩意学来干什么。当苦尽甘来终于理解线性代数时干什么的时候,发现人家国外的教材第一节就把这玩意讲清楚了。你只会大骂我们国内这些教材,什么狗东西(以上是自己学完线性代数后的吐槽,我们同学无一例外都这么觉得)。

而我想告诉你,动态规划和线性代数一样,我学完了才知道,它不过就是研究空间换时间,提前将固定的重复操作规划到dp数组中,而不用暴力求解,从而让效率极大提升。

  1. 但是网上教动态规划的兄弟们,你直接给一个动态方程是怎么回事?和线性代数,一上来就教行列式和矩阵一样,纯属恶心人。我差不多做了30多道动态规划题目,才理解,动态方程只是一个步骤而已,而这已经浪费我很长时间了,我每道题都一知半解不理解,过程及其痛苦。最后只能重新做。
  2. 动态规划,一定是优先考虑重复操作与dp数组之间的关系,搞清楚后,再提出动态方程。而你们前面步骤省略了不讲,一上来给个方程,不是纯属扯淡吗?
  3. 我推荐研究动态规划题目,按5个步骤,从上到下依次来分析
  1. DP数组及下标含义
  2. 递推公式
  3. dp数组初始化
  4. 数组遍历顺序(双重循环及以上时,才考虑)
  5. dp数组打印,分析思路是否正确(相当于做完题,检查一下)

在这里插入图片描述

先理解题目细节

在这里插入图片描述

  1. 二叉搜索树,左子树都比根结点小,右子树都比根结点大,左右子树又各是一个二叉搜索树。而如果给我们一个数3.那么也就是让我们用①、②、③这3个结点构成二叉搜索树。
  1. 如果我们用①作根结点,那么②和③都大于①,只能在它右边,用②作根结点,那么①小于②只能放在左边,③大于②只能放在右边。
  2. 那么左右分多少个结点呢?我们发现,当我们截取②作为根,①、②、③这个序列,它左边的都小于它所有最终都会在它左边,同理右边的都在它右边。
  3. 令j = ②表示以②为根,共有i = 3个结点,那么②左边的,也就是j-1个 = 2-1 = 1个元素会被放在左子树。②右边的,也就是i - j= 3-2 = 1个元素会被放在右边
  1. dp数组存储:给你i个结点,有几种摆放方式可以构成二叉搜索树。下标i表示当前给我们多少结点可以用于构成二叉搜索树。
  2. i = 0时,只有一种方法组成二叉搜索树,就是什么都不摆,故,dp[0] = 1
  3. i = 1时,只有一个结点①组成二叉搜索树,只有一个结点,只有一种摆放方式,故,dp[1] = 1.
  4. i = 2时,有两个结点①和②可以组成二叉搜索树,所以我们有两种思路
  1. ①作为根结点,记为j,左边有j-1个元素比它小,右边有i - j个元素比它大
  2. ②作为根结点同理。
    在这里插入图片描述
  3. 而它的左右子树,有几个元素呢,你会发现一定比当前的i值小。都不大于2. 那么它们各有几种摆放方式呢?前面的dp数组构造时,已经考虑过了i = 0时,dp[0]=1, i=1时,dp[1]=1.两个相乘,就是以j为根的i个元素可以构造的二叉搜索树数量。最后将所有不同根结点情况相加即可。
解题思路
  1. 暴力求解的思想,就是利用回溯算法,不撞南墙不回头。
  2. 但是如果我们预先将其存储到dp数组,就可以直接通过dp, 获取数据,而不用枚举。典型的动态规划题目
动态规划思考5步曲
  1. DP数组及下标含义
  1. 我们要求出的是给你i个结点,可以构造出多少种不同二叉搜索树。显然dp数组中存储的就是i个结点,可以构造出多少种不同二叉搜索树。要求出谁的?显然是求出,i个结点可构造二叉搜索树数量。那么下标就是代表用几个结点构造二叉搜索树,很显然,只需要一个下标,也就是一维数组。
  1. 递推公式
  1. 因为0个结点只有一种摆放方式,1个结点也只有一种摆放方式,所以:F(0) = F(1) = 1;
  2. 对于其它数i,我们可以通过指定不同根结点,构造多种不同二叉搜索树。我们用j来表示当前用哪个结点代表根结点。例如i = 3,有1,2,3这3个数可以构造,当我们选其中一个数,例如1.那么必须保证左边都小于它,右边都大于它。也就是2和3必须在它右边,而没有比1小的数,因此左子树为空
  3. 因此,当我们选中j作为根结点后,它左边有j-1个数,右边有i-j个数。左边j-1个数可以构造dp[j-1]个不同二叉搜索树。右边i-j个数可以构造dp[i-j]个二叉搜索树。
  4. 当我们j的右边固定不变时,左边每变一次,都是一课全新二叉搜索树。同理,左边不变,右边变,也一样。所以他俩是相乘的关系。也就是以j为根节点,有dp[j-1] * dp[i-j]种不同二叉搜索树。
  5. 而当i = 3,我们有①,②,③这3个结点,j可以选择任意一个作为根结点,所以每种情况都得考虑,因此j = ① 和 j = ② 和 j = ③这3种情况的和才是dp[i]的值。故:F[i] = F[1-1] * F[i-1] + F[2-1] * F[i-2] + F[3-1] * F[i-3] + … + F[i-1] * F[i-i]
  1. dp数组初始化

在这里插入图片描述

  1. 数组遍历顺序(单重循环,无需考虑遍历顺序,一共就一维,哪里来的谁先谁后)
  2. 打印dp数组(自己生成dp数组后,将dp数组输出看看,是否和自己预想的一样。)

在这里插入图片描述

代码:时间复杂度O(n).空间复杂度O(n)

在这里插入图片描述

class Solution {public int numTrees(int n) {int dp[] = new int[n+1];//需要0到n的下标范围,因此需要n+1个元素dp[0] = dp[1] = 1;//0个结点和1个结点,只有一种摆放方式for(int i = 2;i<=n;i++){//剩下的,需要将不同结点作为根结点的情况加起来for(int j = 1;j<=i;j++){//j表示当前用谁当根结点dp[i]+=dp[j-1]*dp[i-j];//j当根结点,左边有j-1个元素,右边有i-j个元素}}return dp[n];//返回n个结点可以构成多少种二叉搜索树}
}

这篇关于java数据结构与算法刷题-----LeetCode96. 不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613763

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2