LLM:Scaling Laws for Neural Language Models 理解

2024-01-16 07:44

本文主要是介绍LLM:Scaling Laws for Neural Language Models 理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

核心结论

1:LLM模型的性能主要与计算量C,模型参数量N和数据大小D三者相关,而与模型的具体结构 (层数/深度/宽度) 基本无关。三者满足:  C ≈ 6ND

2. 为了提升模型性能,模型参数量N和数据大小D需要同步放大,但模型和数据分别放大的比例还存在争议。

核心公式:本部分来自参考2.

  • 第一项L_{\infty }是指无法通过增加模型规模来减少的损失,可以认为是数据自身的熵(例如数据中的噪音)
  • 第二项(\frac{x_{0}}{x})^{a}是指能通过增加计算量来减少的损失,可以认为是模型拟合的分布与实际分布之间的差。

根据公式,增大x (例如计算量C),模型整体loss下降,模型性能提升;伴随x (例如计算量C) 趋向于无穷大,模型能拟合数据的真实分布,让第二项逼近0,整体趋向于L_{\infty }

结论验证

从图上可以看出:

1:当模型的参数量 N 为10^{3}时(图中紫色的线),在 Token 数量达到 10^{9}后(图中红色的圈),模型基本收敛,继续增加训练的 Token 数量,纵轴的Test Loss 并没有明显下降。

2:如果此时,增加模型的参数量N:10^{3}->10^{9}。 纵轴的Test Loss:从6.x->3.x。可以看出:提升模型参数量带来的收益更大。

测试一下:你对 scale law 的理解程度:基于上图,当模型的参数量 N 为10^{3}图中紫色的线,模型收敛需要的算力C,以及耗时呢?

先看实验答案:下图红色箭头指向位置,也就是图中紫色线的拐点。

C\approx 6\ast N\ast D\approx 6\ast 10^{3}\ast 10^{9}\approx 6\ast 10^{12}

Compute (PF-days) \approx 7\ast 10^{-8}

如果没做实验,收敛算力和收敛耗时该怎么推算呢?

C\approx 6\ast N\ast D\approx 6\ast 10^{3}\ast 10^{9}\approx 6\ast 10^{12}

Compute(PF-days) = \frac{C}{PF-days}=\frac{6\ast 10^{12}}{8.64\ast 10^{19}}\approx 6.99\ast 10^{-8}=7\ast 10^{-8}

Tips:

PF-days: 如果每秒钟可进行1015次运算,就是1 peta flops,那么一天的运算就是1015×24×3600=8.64×1019,这个算力消耗被称为1个petaflop/s-day。

再看个例子:

下图是Baichuan-2技术报告中的Scaling Law曲线。基于10M到3B的模型在1T数据上训练的性能,可预测出最后7B模型和13B模型在2.6T数据上的性能。

 在1T的数据上,训练的10M-3B的模型,是怎么推算训练7B/13B需要2.6T数据呢?

C\approx 6\ast N\ast D

D\approx \frac{C}{6\ast N}=\frac{10^{23}}{6\ast 7B}=\frac{10^{23}}{6\ast 7\ast 10^{9}}\approx 2.38T

2.38T 是理论数值,与 2.6T基本一致了。

参考

1:介绍一些Scaling Laws - 知乎

2:解析大模型中的Scaling Law - 知乎 

这篇关于LLM:Scaling Laws for Neural Language Models 理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611798

相关文章

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念