R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群

2024-01-16 07:28

本文主要是介绍R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Package paleobioDB version 0.7.0

paleobioDB 包在2020年已经停止更新,该包依赖PBDB v1 API。

可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后,执行本地安装。


Usage

pbdb_orig_ext (data, rank, 
temporal_extent, res, orig_ext,  
colour="#0000FF30", bord="#0000FF", do.plot=TRUE)

Arguments

参数【data】:输入的数据,数据帧格式。可以通过 pbdb_occurrences() 函数 传参 show = c("phylo", "ident") 获得数据。

参数【rank】:设置感兴趣的分类阶元。可选项包括:“species”,“genus”,“family”,“order”,“class” 和 “phylum”。默认值为 “species”

参数【temporal_extent】:设置时间范围,向量型(min,max)。

参数【res】:数值型。设置时间范围的时间段刻度。

参数【orig_ext】1 表示出现,2 表示灭绝。

参数【colour】:改变图中柱子的颜色。默认为 skyblue2

参数【bord】:设置图形边界的颜色。

参数【do.plot】TRUE/FALSE。默认为 TRUE


Value

返回一个数据帧,在选定的时间范围内,展示目标分类阶元的第一次出现次数和灭绝次数。并且绘制图形。


Example

library(paleobioDB)
library(RCurl)options(RCurlOptions = list(cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")))canidae<-  pbdb_occurrences (limit="all", vocab="pbdb",
+                              base_name="Canidae", show=c("phylo", "ident"))

> pbdb_orig_ext (canidae, rank="genus", temporal_extent=c(0, 10), 
+                res=1, orig_ext=1) new ext
1-2 to 0-1    2   2
2-3 to 1-2    0   0
3-4 to 2-3    3   2
4-5 to 3-4    8   6
5-6 to 4-5    3   4
6-7 to 5-6    5   0
7-8 to 6-7    0   0
8-9 to 7-8    0   0
9-10 to 8-9   0   0

> pbdb_orig_ext (canidae, rank="species", temporal_extent=c(0, 10), 
+                res=1, orig_ext=2) new ext
1-2 to 0-1    7  14
2-3 to 1-2   10  14
3-4 to 2-3   39  13
4-5 to 3-4   24  16
5-6 to 4-5   14   9
6-7 to 5-6   21   0
7-8 to 6-7    0   0
8-9 to 7-8    1   0
9-10 to 8-9   2   0


Page

function (data, rank, temporal_extent, res, orig_ext = 1, colour = "#0000FF30", bord = "#0000FF", do.plot = TRUE) 
{temporal_range <- pbdb_temp_range(data = data, rank = rank, do.plot = FALSE)te <- temporal_extentsequence <- seq(from = min(te), to = (max(te)), by = res)intv <- data.frame(min = sequence[1:length(sequence) - 1], max = sequence[2:length(sequence)])labels1 <- paste(intv[, 1], intv[, 2], sep = "-")labels2 <- paste(labels1[2:(length(labels1))], labels1[1:(length(labels1) - 1)], sep = " to ")res_sp <- list()for (i in 1:dim(intv)[1]) {intvv <- intv[i, ]cases1 <- which(as.numeric(temporal_range$min) >= intvv$min & as.numeric(temporal_range$min) <= intvv$max & as.numeric(temporal_range$max) >= intvv$max)cases2 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) <= intvv$max & as.numeric(temporal_range$max) >= intvv$min)cases3 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) >= intvv$max)cases <- unique(c(cases1, cases2, cases3))sps <- temporal_range[cases, ]res_sp[[i]] <- sps}change <- data.frame()for (i in length(res_sp):2) {new_taxa <- length(setdiff(row.names(res_sp[[i - 1]]), row.names(res_sp[[i]])))ext <- length(setdiff(row.names(res_sp[[i]]), row.names(res_sp[[i - 1]])))col <- c(new_taxa, ext)change <- rbind(change, col)}names(change) <- c("new", "ext")change <- change[rev(as.numeric(row.names(change))), ]row.names(change) <- labels2if (do.plot == TRUE) {ymx <- max(change[, orig_ext])ymn <- min(change[, orig_ext])xmx <- sequence[length(sequence) - 1]xmn <- sequence[2]plot.new()par(mar = c(5, 5, 2, 5), font.lab = 1, col.lab = "grey20", col.axis = "grey50", cex.axis = 0.8)plot.window(xlim = c(xmx, xmn), xaxs = "i", ylim = c(ymn, ymx), yaxs = "i")abline(v = seq(xmn, xmx, by = res), col = "grey90", lwd = 1)abline(h = seq(0, ymx, by = (ymx/10)), col = "grey90", lwd = 1)xx <- c(xmn, sequence[2:(length(sequence) - 1)], xmx)yy <- c(0, change[, orig_ext], 0)polygon(xx, yy, col = colour, border = bord)axis(1, line = 1, labels = labels2, at = xx[-c(1, length(xx))])axis(2, line = 1, las = 1)mtext("Million years before present", line = 3, adj = 1, side = 1)mtext(paste("Number of ", rank, sep = ""), line = 3, adj = 0, side = 2)title(ifelse(orig_ext == 1, "First appearences", "Last appearences"))}return(change)
}

这篇关于R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611738

相关文章

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

C语言 | Leetcode C语言题解之第393题UTF-8编码验证

题目: 题解: static const int MASK1 = 1 << 7;static const int MASK2 = (1 << 7) + (1 << 6);bool isValid(int num) {return (num & MASK2) == MASK1;}int getBytes(int num) {if ((num & MASK1) == 0) {return

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

如何确定 Go 语言中 HTTP 连接池的最佳参数?

确定 Go 语言中 HTTP 连接池的最佳参数可以通过以下几种方式: 一、分析应用场景和需求 并发请求量: 确定应用程序在特定时间段内可能同时发起的 HTTP 请求数量。如果并发请求量很高,需要设置较大的连接池参数以满足需求。例如,对于一个高并发的 Web 服务,可能同时有数百个请求在处理,此时需要较大的连接池大小。可以通过压力测试工具模拟高并发场景,观察系统在不同并发请求下的性能表现,从而

C语言:柔性数组

数组定义 柔性数组 err int arr[0] = {0}; // ERROR 柔性数组 // 常见struct Test{int len;char arr[1024];} // 柔性数组struct Test{int len;char arr[0];}struct Test *t;t = malloc(sizeof(Test) + 11);strcpy(t->arr,