【BestCoder Round 65C】【树状数组 动态查找第k大 O(nlogn)】ZYB's Premutation 告诉你前i个数中的逆序对数让你还原全排列

本文主要是介绍【BestCoder Round 65C】【树状数组 动态查找第k大 O(nlogn)】ZYB's Premutation 告诉你前i个数中的逆序对数让你还原全排列,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ZYB's Premutation

Accepts: 218
Submissions: 983
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
问题描述
ZYBZYB有一个排列PP,但他只记得PP中每个前缀区间的逆序对数,现在他要求你还原这个排列.(i,j)(i < j)(i,j)(i<j)被称为一对逆序对当且仅当A_i>A_jAi>Aj
输入描述
第一行一个整数TT表示数据组数。接下来每组数据:第一行一个正整数NN,描述排列的长度.第二行NN个正整数A_iAi,描述前缀区间[1,i][1,i]的逆序对数.数据保证合法.1 \leq T \leq 51T5,1 \leq N \leq 500001N50000
输出描述
TT行每行NN个整数表示答案的排列.
输入样例
1
3
0 1 2
输出样例
3 1 2


【BestCoder Round 65C】【树状数组 动态查找第k大 O(n(logn)^2)】ZYB's Premutation 告诉你前i个数中的逆序对数让你还原全排列

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=5e4+10,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int a[N];
int b[N];
int ans[N];
int n;
void add(int x,int v)
{for(;x<=n;x+=x&-x)b[x]+=v;
}
int cnt(int x)
{int tmp=0;for(;x;x-=x&-x)tmp+=b[x];return tmp;
}
int main()
{scanf("%d",&casenum);for(casei=1;casei<=casenum;++casei){MS(b,0);scanf("%d",&n);for(int i=1;i<=n;++i){scanf("%d",&a[i]);//记录有多少个数比这个数大add(i,1);}for(int i=n;i>=1;--i){int kth=i-(a[i]-a[i-1]);int l=1;int r=n;while(l<r){int m=(l+r)>>1;if(cnt(m)>=kth)r=m;else l=m+1;}ans[i]=l;add(l,-1);}for(int i=1;i<n;++i)printf("%d ",ans[i]);printf("%d\n",ans[n]);}return 0;
}
/*
【题意】
告诉你一个1~n(1<=n<=50000)的全排列。
然后,告诉你前i个数中总共有多少个逆序对。
让你还原这个全排列。【类型】
树状数组+二分【分析】
告诉你前i个数共有几个逆序对,事实上就告诉了你,第i个数和之前的数共计形成了多少个逆序对。
也就是说,我们就知道了,对于第i个数,它在前i个数中排第几。
然而,我们发现这个很多时候并没有什么卵用,我们还是确定不了数值。除了——最后一个数。最后一个数在所有数中排第几,我们就能知道这个数是几。
然后,因为后面所有数都不涉及到这最后一个数的信息,于是我们把最后一个数从我们当前数的集合中抹去。
接下来,用同样的方法处理倒数第二个数,倒数第三个数,直到最后处理完所有的n个数。我们发现,为了实现刚才的想法,我们需要知道动态知道当前第几大的数是几。
这个我们可以通过线段树,用O(nlogn)实现。
也可以通过树状数组+二分,用O(n(logn)^2)实现。
就是二分最后一个数是m,看看前m个数中数的个数是否达到kth。
树状数组虽然多了一个logn,但是常数很小,所以一样可以快速AC。然而,接下来还要为大家介绍一种O(nlogn)的树状数组做法。~~【时间复杂度&&优化】
O(n(logn)^2) ->O(nlogn)【数据】
0 1 2 3 4
0 1 3 6 10*/

【BestCoder Round 65C】【树状数组 动态查找第k大 O(nlogn)】ZYB's Premutation 告诉你前i个数中的逆序对数让你还原全排列

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre(){freopen("c://test//input.in","r",stdin);freopen("c://test//output.out","w",stdout);}
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1,class T2>inline void gmax(T1 &a,T2 b){if(b>a)a=b;}
template <class T1,class T2>inline void gmin(T1 &a,T2 b){if(b<a)a=b;}
const int N=5e4+10,M=0,Z=1e9+7,ms63=1061109567;
int casenum,casei;
int a[N];
int b[N];
int ans[N];
int n;
void add(int x,int v)
{for(;x<=n;x+=x&-x)b[x]+=v;
}
int cnt(int x)
{int tmp=0;for(;x;x-=x&-x)tmp+=b[x];return tmp;
}
int main()
{scanf("%d",&casenum);for(casei=1;casei<=casenum;++casei){MS(b,0);scanf("%d",&n);for(int i=1;i<=n;++i){scanf("%d",&a[i]);//记录有多少个数比这个数大add(i,1);}int top;for(top=1;top<=n;top<<=1);top>>=1;for(int i=n;i>=1;--i){int kth=i-(a[i]-a[i-1]);int p=0;int sum=0;for(int j=top;j;j>>=1)if(p+j<=n&&sum+b[p+j]<kth){p+=j;sum+=b[p];}++p;ans[i]=p;add(p,-1);}for(int i=1;i<n;++i)printf("%d ",ans[i]);printf("%d\n",ans[n]);}return 0;
}
/*
【题意】
告诉你一个1~n(1<=n<=50000)的全排列。
然后,告诉你前i个数中总共有多少个逆序对。
让你还原这个全排列。【类型】
树状数组+二分【分析】
告诉你前i个数共有几个逆序对,事实上就告诉了你,第i个数和之前的数共计形成了多少个逆序对。
也就是说,我们就知道了,对于第i个数,它在前i个数中排第几。
然而,我们发现这个很多时候并没有什么卵用,我们还是确定不了数值。除了——最后一个数。最后一个数在所有数中排第几,我们就能知道这个数是几。
然后,因为后面所有数都不涉及到这最后一个数的信息,于是我们把最后一个数从我们当前数的集合中抹去。
接下来,用同样的方法处理倒数第二个数,倒数第三个数,直到最后处理完所有的n个数。我们发现,为了实现刚才的想法,我们需要知道动态知道当前第几大的数是几。
这个我们可以通过线段树,用O(nlogn)实现。
也可以通过树状数组+二分,用O(n(logn)^2)实现。
就是二分最后一个数是m,看看前m个数中数的个数是否达到kth。
树状数组虽然多了一个logn,但是常数很小,所以一样可以快速AC。然而,接下来还要为大家介绍一种O(nlogn)的树状数组做法。~~
具体是怎样呢?
先回顾一下树状数组,以 +=x&-x 向上加权, -=x&-x 向下统计的做法为例。
我们会统计前1,2,4,8,16个数的权值到相应的计数桶里。
所以,如果我们要求前k大的,类似于倍增的做法,我们就跳着找——
前1个数内数的个数是否有k-1个
前2个数内数的个数是否有k-1个
前4个数内数的个数是否有k-1个
前8个数内数的个数是否有k-1个
如果没有,我们就计数+,而且把下标移过去,同时降低我们的倍增幅度(因为显然不会再倍增相同幅度)
如果有,我们就不计数+,不把下标移过去,但依然要降低我们的倍增幅度(因为我们这个幅度不能延伸,所以要看更小的范围)
直到我们得到最大的延展范围,使得范围内的数的个数恰好为k-1个。
于是,我们使得的下标向后移1,范围内数的个数就会恰好是k个。充分利用了树状数组的性质,使得做法是O(nlogn)【时间复杂度&&优化】
O(n(logn)^2) ->O(nlogn)【数据】
0 1 2 3 4
0 1 3 6 10*/


这篇关于【BestCoder Round 65C】【树状数组 动态查找第k大 O(nlogn)】ZYB's Premutation 告诉你前i个数中的逆序对数让你还原全排列的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610451

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...