【Good Bye 2014B】【Floyd or 并查集】New Year Permutation 全排列有位置交换序列 使得字典序尽可能小

本文主要是介绍【Good Bye 2014B】【Floyd or 并查集】New Year Permutation 全排列有位置交换序列 使得字典序尽可能小,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

New Year Permutation
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.

Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) wherea1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bk all holds.

As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ ni ≠ j) if and only ifAi, j = 1.

Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.

Input

The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.

The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1and n occurs exactly once in the given permutation.

Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of thei-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where1 ≤ i < j ≤ nAi, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ nAi, i = 0 holds.

Output

In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.

Examples
input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
output
1 2 4 3 6 7 5
input
5
4 2 1 5 3
00100
00011
10010
01101
01010
output
1 2 3 4 5
Note

In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).

In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).

permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Thei-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = 303, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int a[N], p[N];
char s[N][N];
int n;
bool use[N];
int ans[N];
int main()
{while (~scanf("%d", &n)){for (int i = 1; i <= n; ++i){scanf("%d", &a[i]);p[a[i]] = i;}for (int i = 1; i <= n; ++i){scanf("%s", s[i] + 1);s[i][i] = '1';}for (int k = 1; k <= n; ++k){for (int i = 1; i <= n; ++i){for (int j = 1; j <= n; ++j){if (s[i][k] == '1'&&s[k][j] == '1')s[i][j] = '1';}}}MS(use, 0);for (int i = 1; i <= n; ++i){for (int j = 1; j <= n; ++j)if(!use[j]&&s[i][p[j]]=='1'){ans[i] = j;use[j] = 1;p[j] = i;p[a[i]] = p[j];break;}}for (int i = 1; i <= n; ++i)printf("%d ", ans[i]);puts("");}return 0;
}
/*
【题意】
给你一个长度为n(300)的全排列。
同时给你一个n*n的01矩阵s[][]
我们可以交换两个数,当且仅当它们所在的的下标i,j对应着的s[i][j]为1。
问你我们可以得到的最小字典序的排列【类型】
floyd【分析】
这题可以用floyd做。
我们对矩阵做闭包传递的floyd。(或者——并查集)
那么,任意两个位置的数是否可以交换我们就知道了。这个类似于冒泡排序的过程,只要有一个交换链存在,任意一个数都可以位移到它想要的位置。
于是这种做法是可行的。就可以AC啦。【时间复杂度&&优化】
O(n^3)【数据】*/



这篇关于【Good Bye 2014B】【Floyd or 并查集】New Year Permutation 全排列有位置交换序列 使得字典序尽可能小的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610420

相关文章

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

Golan中 new() 、 make() 和简短声明符的区别和使用

《Golan中new()、make()和简短声明符的区别和使用》Go语言中的new()、make()和简短声明符的区别和使用,new()用于分配内存并返回指针,make()用于初始化切片、映射... 详细介绍golang的new() 、 make() 和简短声明符的区别和使用。文章目录 `new()`

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

uva 10099(floyd变式)

题意: 有一个导游要带着一群旅客从一个城市到达另一个城市,每个城市之间有最大的旅客流量限制。 问最少几趟能将这些旅客从一个城市搞到另一个城市。 解析: 用floyd找出最小流量中的最大边,然后次数就是   ceil(总人数 / 最大承载量 - 1),-1的意思是导游每次也要在车上。 ps.老司机哭晕在厕所 代码: #include <iostream>#includ

uva 10048(floyd变式)

题意: 求两个点之间经过的路径中最大噪声最小的值。 解析: floyd的变式,每次取g[i][k] g[k][j]中的大边与当前边g[i][j]比较,取小。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#includ

poj 1734 (floyd求最小环并打印路径)

题意: 求图中的一个最小环,并打印路径。 解析: ans 保存最小环长度。 一直wa,最后终于找到原因,inf开太大爆掉了。。。 虽然0x3f3f3f3f用memset好用,但是还是有局限性。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#incl

uva 10131 最长子序列

题意: 给大象的体重和智商,求体重按从大到小,智商从高到低的最长子序列,并输出路径。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vect

poj 1182 并查集 食物链类

题意: 有n只动物,分别编号1....n。所有动物都属于A,B,C中的一种,已知A吃B,B吃C,C吃A。 按顺序给出下面两种共K条信息: 1. x 和 y 属于同一类。 2. x 吃 y 。 然而这些信息可能会出错,有可能有的信息和之前给出的信息矛盾,也有的信息可能给出的 x 和 y 不在n的范围内。 求k条信息中有多少条是不正确的。 解析: 对于每只动物,创建3个元素 i