xlua源码分析(五) struct类型优化

2024-01-15 22:20

本文主要是介绍xlua源码分析(五) struct类型优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

xlua源码分析(五) struct类型优化

上一节我们分析了xlua是如何实现lua层访问C#值类型的,其中我们重点提到了xlua默认实现方式下,struct访问的效率问题。实际上,xlua还提供了两种优化的方式,可以大大提高struct访问的性能。具体例子在Examples 12_ReImplementInLua中。

第一种优化方式就是在lua层改造C#的struct,C# struct push到lua层时仍为userdata,但它的metatable不指向C#层struct,而是lua层自己实现的:

function test_vector3(title, v1, v2)print(title)v1.x = 100print(v1.x, v1.y, v1.z)print(v1, v2)print(v1 + v2)v1:Set(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z)print(v1)print(CS.UnityEngine.Vector3.Normalize(v1))
endlocal get_x, set_x = xlua.genaccessor(0, 8)
local get_y, set_y = xlua.genaccessor(4, 8)
local get_z, set_z = xlua.genaccessor(8, 8)local fields_getters = {x = get_x, y = get_y, z = get_z
}
local fields_setters = {x = set_x, y = set_y, z = set_z
}local ins_methods = {Set = function(o, x, y, z)set_x(o, x)set_y(o, y)set_z(o, z)end
}local mt = {__index = function(o, k)--print('__index', k)if ins_methods[k] then return ins_methods[k] endreturn fields_getters[k] and fields_getters[k](o)end,__newindex = function(o, k, v)if fields_setters[k] then fields_setters[k](o, v) else error('no such field ' .. k) endend,__tostring = function(o)return string.format('vector3 { %f, %f, %f}', o.x, o.y, o.z)end,__add = function(a, b)return CS.UnityEngine.Vector3(a.x + b.x, a.y + b.y, a.z + b.z)end
}xlua.setmetatable(CS.UnityEngine.Vector3, mt)
test_vector3('----after change metatable----', CS.UnityEngine.Vector3(1, 2, 3), CS.UnityEngine.Vector3(7, 8, 9))

这里的代码,就是在lua层实现了一下Vector3的get/set属性和方法,然后替换掉原先的metatable,xlua.setmetatable就是做这个工作的,替换的逻辑很简单,就是找到要替换类的type id,重新设置到registry表里:

public static int XLuaMetatableOperation(RealStatePtr L)
{try{ObjectTranslator translator = ObjectTranslatorPool.Instance.Find(L);Type type = getType(L, translator, 1);if (type == null){return LuaAPI.luaL_error(L, "xlua.metatable_operation, can not find c# type");}bool is_first = false;int type_id = translator.getTypeId(L, type, out is_first);var param_num = LuaAPI.lua_gettop(L);if (param_num == 1) //get{LuaAPI.xlua_rawgeti(L, LuaIndexes.LUA_REGISTRYINDEX, type_id);return 1;}else if (param_num == 2) //set{if (LuaAPI.lua_type(L, 2) != LuaTypes.LUA_TTABLE){return LuaAPI.luaL_error(L, "argument #2 must be a table");}LuaAPI.lua_pushnumber(L, type_id);LuaAPI.xlua_rawseti(L, 2, 1);LuaAPI.xlua_rawseti(L, LuaIndexes.LUA_REGISTRYINDEX, type_id);return 0;}else{return LuaAPI.luaL_error(L, "invalid argument num for xlua.metatable_operation: " + param_num);}}catch (Exception e){return LuaAPI.luaL_error(L, "c# exception in xlua.metatable_operation: " + e);}
}

不过,lua层的Vector3依旧是userdata,如何在lua层对userdata设置/获取数据呢?为此,xlua提供了xlua.genaccessor函数,它接受两个参数,第一个参数表示要设置/获取的字段相对于struct的内存偏移,第二个参数表示要设置/获取的字段类型,对于Vector3,x,y,z的偏移分别为0,4,8,而它们的类型均为float,float在xlua预先定义的类型ID为8:

#define T_INT8   0
#define T_UINT8  1
#define T_INT16  2
#define T_UINT16 3
#define T_INT32  4
#define T_UINT32 5
#define T_INT64  6
#define T_UINT64 7
#define T_FLOAT  8
#define T_DOUBLE 9

genaccessor函数是在C层实现的,那其实很简单了,就是把userdata作为要访问内存的首地址,加上偏移量offset,执行memcpy即可,如果是get,就是从userdata拷贝到value,再push到lua栈;如果是set,就先从lua栈上取出value,再拷贝到userdata。

#define DIRECT_ACCESS(type, push_func, to_func) \
int xlua_struct_get_##type(lua_State *L) {\CSharpStruct *css = (CSharpStruct *)lua_touserdata(L, 1);\int offset = xlua_tointeger(L, lua_upvalueindex(1));\type val;\if (css == NULL || css->fake_id != -1 || css->len < offset + sizeof(type)) {\return luaL_error(L, "invalid c# struct!");\} else {\memcpy(&val, (&(css->data[0]) + offset), sizeof(type));\push_func(L, val);\return 1;\}\
}\
\
int xlua_struct_set_##type(lua_State *L) { \CSharpStruct *css = (CSharpStruct *)lua_touserdata(L, 1);\int offset = xlua_tointeger(L, lua_upvalueindex(1));\type val;\if (css == NULL || css->fake_id != -1 || css->len < offset + sizeof(type)) {\return luaL_error(L, "invalid c# struct!");\} else {\val = (type)to_func(L, 2);\memcpy((&(css->data[0]) + offset), &val, sizeof(type));\return 0;\}\
}\

上面例子的运行结果如下:

xlua源码分析(五) struct类型优化1

第二种优化方式,是将struct映射成table,即C#层push到lua层的struct,不再为userdata,而是一个table,xlua提供了PackAsTable这个attribute指示生成代码时采用映射table的方式:

[GCOptimize(OptimizeFlag.PackAsTable)]
public struct PushAsTableStruct
{public int x;public int y;
}

然后,lua层也需要实现配套的代码,即struct的object metatable和class metatable,相当于在lua层实现struct:

local mt = {__index = {SwapXY = function(o) --成员函数o.x, o.y = o.y, o.xend},__tostring = function(o) --打印格式化函数return string.format('struct { %d, %d}', o.x, o.y)end,
}xlua.setmetatable(CS.XLuaTest.PushAsTableStruct, mt)local PushAsTableStruct = {Print = function(o) --静态函数print(o.x, o.y)end
}setmetatable(PushAsTableStruct, {__call = function(_, x, y) --构造函数return setmetatable({x = x, y = y}, mt)end
})xlua.setclass(CS.XLuaTest, 'PushAsTableStruct', PushAsTableStruct)

在测试代码中,我们先在C#层push一下struct:

PushAsTableStruct test;
test.x = 100;
test.y = 200;
luaenv.Global.Set("from_cs", test);

然后再在lua层进行测试:

print('--------------from csharp---------------------')
assert(type(from_cs) == 'table')
print(from_cs)
CS.XLuaTest.PushAsTableStruct.Print(from_cs)
from_cs:SwapXY()
print(from_cs)print('--------------from lua---------------------')
local from_lua = CS.XLuaTest.PushAsTableStruct(4, 5)
assert(type(from_lua) == 'table')
print(from_lua)
CS.XLuaTest.PushAsTableStruct.Print(from_lua)
from_lua:SwapXY()
print(from_lua)

此时C#层push时,不会再生成userdata,而是生成一个table,然后设置字段x和字段y:

public void PushXLuaTestPushAsTableStruct(RealStatePtr L, XLuaTest.PushAsTableStruct val)
{if (XLuaTestPushAsTableStruct_TypeID == -1){bool is_first;XLuaTestPushAsTableStruct_TypeID = getTypeId(L, typeof(XLuaTest.PushAsTableStruct), out is_first);}LuaAPI.xlua_pushcstable(L, 2, XLuaTestPushAsTableStruct_TypeID);LuaAPI.xlua_pushasciistring(L, "x");LuaAPI.xlua_pushinteger(L, val.x);LuaAPI.lua_rawset(L, -3);LuaAPI.xlua_pushasciistring(L, "y");LuaAPI.xlua_pushinteger(L, val.y);LuaAPI.lua_rawset(L, -3);}

同样的道理,要从lua层把struct传递到C#层,就要获取lua层的table,把它的字段x和字段y取出,依次赋值到C#对象上:

public static void UnPack(ObjectTranslator translator, RealStatePtr L, int idx, out XLuaTest.PushAsTableStruct val)
{val = new XLuaTest.PushAsTableStruct();int top = LuaAPI.lua_gettop(L);if (Utils.LoadField(L, idx, "x")){translator.Get(L, top + 1, out val.x);}LuaAPI.lua_pop(L, 1);if (Utils.LoadField(L, idx, "y")){translator.Get(L, top + 1, out val.y);}LuaAPI.lua_pop(L, 1);}

例子的输出结果如下:

xlua源码分析(五) struct类型优化2

这两种优化方式,各有优劣,第一种方式,userdata比table更加省内存;而第二种方式,使用原始table操作性能上要比使用userdata要好。两种方式都需要额外生成一些代码。与tolua相比,tolua的struct是采用了类似第二种的方式,tolua的struct在lua层就是个table,需要完整按照C#层实现一遍struct。而数据传输的逻辑,稍微不太相同,tolua是使用lua函数进行数据传输,例如Vector3,tolua可以通过一个get函数直接返回3个float*给C#层,也可以通过一个new函数直接使用x,y,z三个参数构造出一个lua层的struct,pack和unpack的逻辑都放在了lua层里。

function Vector3.New(x, y, z)				local t = {x = x or 0, y = y or 0, z = z or 0}setmetatable(t, Vector3)						return t
endfunction Vector3.Get(v)		return v.x, v.y, v.z	
end

这篇关于xlua源码分析(五) struct类型优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610392

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者