ROS+opencv 人脸,眼睛,手掌识别程序解读

2024-01-15 16:30

本文主要是介绍ROS+opencv 人脸,眼睛,手掌识别程序解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算是第一次在CSDN上写博客,之前在windows下有onenote神器,然而在ubuntu下真的没有找到比较好的记笔记方法,所以来到CSDN这个圣殿来记录一下学习的印记。学习ROS已经有一个月的时间了,曲曲折折,之前的经历和经验会找时间补上。
接下来进入正题,ros与opencv的用法。
首先要配置好launch文件,代码如下:

<?xml version="1.0"?>
<launch><node pkg="robot_vision" name="eyes_detector" type="eyes_detector.py" output="screen"><remap from="input_rgb_image" to="/usb_cam/image_raw" /><rosparam>haar_scaleFactor: 1.2haar_minNeighbors: 2haar_minSize: 40haar_maxSize: 60</rosparam><param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" /><param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" /><param name="cascade_3" value="$(find robot_vision)/data/haar_detectors/haarcascade_eye.xml" /><param name="cascade_4" value="$(find robot_vision)/data/haar_detectors/haarcascade_smile.xml" /><param name="cascade_5" value="$(find robot_vision)/data/haar_detectors/haarcascade_hand.xml" /></node>
</launch>

launch文件启动节点就不多讲了,eyes_detecor.py是一会要讲的程序,一会再说 ,rosparam是用来配置ros参数的,其中配置的是haar检测的相关参数,在我上篇转载的文章中有讲述到,下面的五个param是调用事先下载好的haarcascade,这个算法是2001年Viola和Jones提出来的基于Haar特征的级联分类器对象检测算法,想更多了解具体算法的话,自行谷歌。这里面是在github上下载的训练好的cascde,俗话理解就是在这些文件里面已经包含了很多人脸,眼睛的特征,只需要和你的脸进行匹配的算法。
接下来贴上节点代码:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeErrorclass faceDetector:def __init__(self):rospy.on_shutdown(self.cleanup);# 创建cv_bridgeself.bridge = CvBridge()self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)# 获取haar特征的级联表的XML文件,文件路径在launch文件中传入cascade_1 = rospy.get_param("~cascade_1", "")  #正脸识别导入cascade_2 = rospy.get_param("~cascade_2", "")  #侧脸识别导入cascade_3 = rospy.get_param("~cascade_3", "")  #眼睛识别导入cascade_4 = rospy.get_param("~cascade_4", "")  #微笑识别导入cascade_5 = rospy.get_param("~cascade_5", "")  #手掌识别导入# 使用级联表初始化haar特征检测器self.cascade_1 = cv2.CascadeClassifier(cascade_1)self.cascade_2 = cv2.CascadeClassifier(cascade_2)self.cascade_3 = cv2.CascadeClassifier(cascade_3)self.cascade_4 = cv2.CascadeClassifier(cascade_4)self.cascade_5 = cv2.CascadeClassifier(cascade_5)# 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置self.haar_scaleFactor  = rospy.get_param("~haar_scaleFactor", 1.2)self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)self.haar_minSize      = rospy.get_param("~haar_minSize", 10)self.haar_maxSize      = rospy.get_param("~haar_maxSize", 30)self.color_green = (50, 255, 50)self.color_blue = (0, 0, 255)# 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)def image_callback(self, data):# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式try:cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")     frame = np.array(cv_image, dtype=np.uint8)except CvBridgeError, e:print e# 创建灰度图像grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 创建平衡直方图,减少光线影响grey_image = cv2.equalizeHist(grey_image)# 尝试检测眼睛,手 eye_result = self.detect_eye(grey_image)hand_result = self.detect_hand(grey_image)#框出眼睛if len(eye_result)>0:for eye in eye_result:ex,ey,ew,eh =eyecv2.rectangle(cv_image, (ex, ey), (ex+ew, ey+eh), self.color_green, 2)#框出手掌if len(hand_result)>0:for hand in hand_result:hx,hy,hw,hh =handcv2.rectangle(cv_image, (hx, hy), (hx+hw, hy+hh), self.color_blue, 2)# 将识别后的图像转换成ROS消息并发布self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))#检测配置def detect_eye(self, input_image):eye = self.cascade_3.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize))return eyedef detect_hand(self, input_image):hand = self.cascade_5.detectMultiScale(input_image, self.haar_scaleFactor, self.haar_minNeighbors, cv2.CASCADE_SCALE_IMAGE, (self.haar_minSize, self.haar_maxSize))return handdef cleanup(self):print "Shutting down vision node."cv2.destroyAllWindows()if __name__ == '__main__':try:# 初始化ros节点rospy.init_node("face_detector")faceDetector()rospy.loginfo("Face detector is started..")rospy.loginfo("Please subscribe the ROS image.")rospy.spin()except KeyboardInterrupt:print "Shutting down face detector node."cv2.destroyAllWindows()

python相关的知识就不细说了,要是没学过python的小伙伴可以花几个小时看看语法,很快就会入门了。在py程序当中,需要获取haar特征的级联表的XML文件,文件路径在launch 文件中传入,然后使用级联表初始化haar特征检测器;
在回调函数中,首先利用cvbridge(ros和opencv的接口)将usb摄像头发布的图像转换成opencv图像,从而在opencv中进行处理;获取opencv图像后先进行灰度化转换,并进行边缘处理和噪声过滤,创建平衡直方图;然后进行眼睛人脸等检测,在检测配置中将事先设置好的参数进行调入;然后利用检测到的边缘,打印方框,框在检测到的眼睛和人脸上;最后再次利用cvbridge,将opencv图像转换成ros图像,最后可以通过rqt来查看效果。
最后划一下重点:

  • 下载好haarcascade_xxxx.xml文件,放到工作空间的你知道的位置,下载地址给出:https://github.com/opencv/opencv/tree/master/data/haarcascades,这个里面没有haarcascsde_hand,下载网址:https://github.com/JongJuJu/webcam-hand-detect/blob/master/haarcascade_hand.xml
  • launch文件和程序节点中都要导入haarcascade文件
  • 通过cvbridge进行ros图像和opencv图像之间的转换
  • 配置参数可以优化检测效果,参数讲解在上篇文章
  • 我给出的程序是检测眼睛和手掌的,其实其他的都一样,只要加载要检测的haarcascade.xml文件就可以检测了
    附上效果图片:

人脸识别
眼睛识别
手掌识别
眼睛手掌同时识别(眼睛小还带眼镜,只好大一点睁着)

第一次写,可能缩进相关的不好看,也没太组织好语言,之后会继续学习,继续完善。

怕什么真理无穷,进一步有进一步的喜悦。

这篇关于ROS+opencv 人脸,眼睛,手掌识别程序解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/609512

相关文章

MySQL中时区参数time_zone解读

《MySQL中时区参数time_zone解读》MySQL时区参数time_zone用于控制系统函数和字段的DEFAULTCURRENT_TIMESTAMP属性,修改时区可能会影响timestamp类型... 目录前言1.时区参数影响2.如何设置3.字段类型选择总结前言mysql 时区参数 time_zon

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis过期键删除策略解读

《Redis过期键删除策略解读》Redis通过惰性删除策略和定期删除策略来管理过期键,惰性删除策略在键被访问时检查是否过期并删除,节省CPU开销但可能导致过期键滞留,定期删除策略定期扫描并删除过期键,... 目录1.Redis使用两种不同的策略来删除过期键,分别是惰性删除策略和定期删除策略1.1惰性删除策略

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

opencv实现像素统计的示例代码

《opencv实现像素统计的示例代码》本文介绍了OpenCV中统计图像像素信息的常用方法和函数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 统计像素值的基本信息2. 统计像素值的直方图3. 统计像素值的总和4. 统计非零像素的数量

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推