NLP论文阅读记录 - 2022 | WOS 一种新颖的优化的与语言无关的文本摘要技术

本文主要是介绍NLP论文阅读记录 - 2022 | WOS 一种新颖的优化的与语言无关的文本摘要技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 0、论文摘要
  • 一、Introduction
    • 1.1目标问题
    • 1.2相关的尝试
    • 1.3本文贡献
  • 二.前提
  • 三.本文方法
  • 四 实验效果
    • 4.1数据集
    • 4.2 对比模型
    • 4.3实施细节
    • 4.4评估指标
    • 4.5 实验结果
      • 4.6 细粒度分析
  • 五 总结
  • 思考


前言

在这里插入图片描述

A Novel Optimized Language-Independent Text Summarization Technique(2204)

0、论文摘要

大量文本数据以多种语言以电子方式呈现。这些文本将齿轮导向信息冗余。消除这种冗余并减少这些数据的读取时间至关重要。因此,我们需要一种计算机化的文本摘要技术来从具有相关主题的文本文档组中提取相关信息。
本文提出了一种与语言无关的提取摘要技术。所提出的技术提出了一种基于聚类的优化技术。聚类技术确定文本的主要主题,而所提出的优化技术则最大限度地减少冗余并最大化重要性。
使用英语的 BillSum 数据集、德语和俄语的 MLSUM 以及阿拉伯语的 Mawdoo3 来设计和评估实验。使用 ROUGE 指标评估实验。结果表明,与其他依赖于语言和独立于语言的摘要技术相比,所提出的技术是有效的。我们的技术为所有使用的数据集实现了更好的 ROUGE 指标。
对于使用所有三个目标的所有数据集,该技术平均实现了 Rouge-1 41.9%、Rouge-2 18.7%、Rouge-3 39.4% 和 Rouge-4 16.8% 的 F 测量。我们的系统还表现出 26.6%、35.5%、34.65% 和 31.54% w.r.t. 的改进。最近的模型在 ROUGE 度量评估方面对 BillSum 的总结做出了贡献。我们的模型的性能高于对比模型,特别是在二元匹配的 ROUGE_2 的度量结果中。

一、Introduction

1.1目标问题

大量不同语言的电子数据增加了从中挖掘有用信息的难度。人们很难阅读如此庞大的文章信息。因此,有必要采用计算机化的摘要技术来推断重要的内容。并迅速突出信息。计算机摘要技术已应用于不同领域,例如网页和在线表格。例如,[1] 中的作者建议使用文本标记提取来改善搜索结果。 [2] 中的作者提出了一种用于媒体分析的文本标记提取方法。与语言无关的摘要提取器是语言分析应用程序。它们的目标是从单个或多文本文档生成较短的文本,同时保持含义。摘要技术可以根据输入、语言、方法或输出进行分类,如图 1 所示[3,4]。可以对单个文本文档或多文本文档的输入进行摘要。在多文本文档摘要中使用一组相关的文本文档。单文本文档源不会显示不一致,但是,在多文本文档源中可能会发现冲突和冗余。因此,多文本文档源摘要比单源文本文档更困难[3-5]。此外,摘要输出可以是非特定的,讨论一个巨大的社区,也可以是基于文本标记的,强调与文本标记相关的特定主题。这对于将该技术分类为指示性过程非常重要[3,4]。
摘要过程也可以定义为提取式,其中摘要输出是通过根据语言特征和统计方面选择主要短语来生成基于加权和的解决方案[3-8]。而摘要依赖于使用自然语言处理技术分析文本语义来生成掌握源文本文档中主要思想的新短语[3,4]。摘要概要更易于理解,类似于人类所做的摘要,但它们需要对源文本有深刻的了解,并且还需要解析器和文本生成器[6,7]。深度学习和迁移学习可以用于抽象概括。深度学习通常可以产生良好的结果。提取摘要利用预定义的特征选择重要的短语。然后组合所选短语以产生摘要输出。在多文本文档中,由于从多个文本文档中挖掘短语,因此出现了冗余问题。在这种情况下必须处理冗余。此外,受限摘要需要选择最佳的摘要输出,而不是杰出的短语。因此,多文本文档摘要将导致全局优化需求[8-10]。

1.2相关的尝试

1.3本文贡献

总之,我们的贡献如下:
1.本文提出了一种与语言无关的提取摘要技术。
2.所提出的技术提出了一种基于聚类的优化技术。
3. 聚类技术确定文本的主要主题,而所提出的优化技术则最大限度地减少冗余并最大化重要性。
4. 针对不同语言设计并评估实验,以证明模型的独立特征。
5. 在英语、德语、俄语和阿拉伯语语言的数据集上进行实验。

二.前提

三.本文方法

四 实验效果

4.1数据集

4.2 对比模型

4.3实施细节

4.4评估指标

4.5 实验结果

4.6 细粒度分析


五 总结

总之,我们将多语言无关的文本摘要过程制定为目标优化过程(同时最大化多个目标)。该模型采用四个阶段:第一阶段是预处理过程,然后进行特征提取和聚类,最后一个阶段是多目标同时优化。通过标记化、停用词去除和规范化等预处理,以统一的形式对句子进行建模。选择统计特征并将其用于每个短语的重要性评分。相关文档的主题是使用质心聚类来定义的。最后一个阶段使用多目标优化进化方法生成最佳摘要,最大化重要性并最小化冗余。结果通过测量 ROUGE 指标验证了我们的模型相对于最先进模型的有效性。我们仍然有一些限制,如下:(i)句子分数是通过实验计算的,可以通过遗传算法计算,以及(ii)我们没有包括输出的一致性,我们可以将其包括到要优化的目标中。

思考

这篇关于NLP论文阅读记录 - 2022 | WOS 一种新颖的优化的与语言无关的文本摘要技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607621

相关文章

关于Spring @Bean 相同加载顺序不同结果不同的问题记录

《关于Spring@Bean相同加载顺序不同结果不同的问题记录》本文主要探讨了在Spring5.1.3.RELEASE版本下,当有两个全注解类定义相同类型的Bean时,由于加载顺序不同,最终生成的... 目录问题说明测试输出1测试输出2@Bean注解的BeanDefiChina编程nition加入时机总结问题说明

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Go语言利用泛型封装常见的Map操作

《Go语言利用泛型封装常见的Map操作》Go语言在1.18版本中引入了泛型,这是Go语言发展的一个重要里程碑,它极大地增强了语言的表达能力和灵活性,本文将通过泛型实现封装常见的Map操作,感... 目录什么是泛型泛型解决了什么问题Go泛型基于泛型的常见Map操作代码合集总结什么是泛型泛型是一种编程范式,允

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Android kotlin语言实现删除文件的解决方案

《Androidkotlin语言实现删除文件的解决方案》:本文主要介绍Androidkotlin语言实现删除文件的解决方案,在项目开发过程中,尤其是需要跨平台协作的项目,那么删除用户指定的文件的... 目录一、前言二、适用环境三、模板内容1.权限申请2.Activity中的模板一、前言在项目开发过程中,尤

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下