模型汇总15 领域适应性Domain Adaptation、One-shot/zero-shot Learning概述

本文主要是介绍模型汇总15 领域适应性Domain Adaptation、One-shot/zero-shot Learning概述,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

几乎所有希望在实际应用中使用机器学习算法的人都会遇到领域适应性(Domain Adaptation)的问题:我们在固定的source domain建立了模型,但希望把我们的模型部署到另外一个或几个不同的target domain中。领域的适应性问题在机器学习实际应用的各个领域都非常常见。

获取最新消息链接:获取最新消息快速通道 - lqfarmer的博客 - 博客频道 - CSDN.NET

比如,语音识别中。一个大规模的语音识别系统,需要对各种带有噪声或口音的语音,都能很好的识别。比如图1中描述的,不同人说话,有不同的口音和语速。

图1 语音识别中的domain adaptation问题

文本处理系统,基于新闻(news)训练的模型,我们希望该模型对于博客(Blog)或论坛(forum)也同样适用。

图2 NLP领域中的domain adaptation问题

图像识别领域,我们从亚马逊的网站上得到了很多没有背景的物体的图片来训练我们的模型,然后希望把训练好的模型用于识别实际生活中存在背景的物体图片。

图3 图像识别领域的domain adaptation问题

这都牵扯到领域适应性(Domain Adaptation)的问题。因此,本文主要介绍下什么是domain adaptation问题,有哪些方法用于解决domain adaptation问题。最后再介绍下domain adaptation / Transfer learning中两个特例,单例学习(one-shot learning)和零例学习(zero-shot learning)

1、领域适应性(Domain adaptation)定义

获取最新消息链接:获取最新消息快速通道 - lqfarmer的博客 - 博客频道 - CSDN.NET

Domain Adaptation是迁移学习(Transfer Learning)中的一种,在之前讲迁移学习分类的时候,我们提到过。在很多机器学习任务中,模型在训练(training)时所采用的样本和模型在测试(testing)时所采用的样本分布(domain adaptation)不一致,导致了领域适应性问题(Problem of Domain Adaptation)。Domain Adaptation尝试去建立一个在training和Testing都适用的模型,用概率统计表示成如下形式:

P(X)不等于P(X’);P(Y|X)约等于P(Y|X’)

2、领域自适应相关基本概念和基本算法

1)、基本概念

协移(Covariate Shift):

Ps(y|x) = Pt(y|x)

Source domain中,基于观测样本x的输出y的条件概率Ps(y|x),与Target Domain中,jiyuguance样本x的输出y的条件概率Pt(y|x),是相同的,即模型不管输入的x是来自于那个分布,他们的输入标签为y的概率是一样的,这种情况成为协方差偏移。

Single Good Hypothesis:

一定存在一个最后的模型或者假设H*,使source domain中关于H*的误差Es(H*)和target domain中关于H*的误差Et(H*)都很小。

领域的差异与误差(Domain discrepancy and Error):

source domain和target domain要有一定大的重叠的交集。如图4所示。

图4 领域的差异与误差问题

2)、domain adaptation算法分类

(1)、按是否有监督与domain adaptation相关的算法分类:

半监督适应性算法(Semi-supervised Adaptation):基于Covariate Shift的方法和基于共享表示(shared representation)学习的方法。

监督适应性算法(Supervised Adaptation):基于特征的方法(Feature-Based Approaches)和基于参数的方法(Parameter-Based Approach)。

(2)、基于原理分类

基于实例或权值重写的方法(Reweighting/Inastance-based methods):通过重写source domain的标签数据的权重(weight)来矫正样本偏差(sample bias),使source domain的样本与target domain的样本尽可能靠近。

图5 基于实例或权值重写的domain adaptation方法

基于特征的方法(Feature-based methods):在source domain和target domain靠近的地方,寻找一个新的、常见的(common)表示空间(representation space)(projection,新的特征等等)

图6 基于特征的domain adaptation方法

基于迭代/调整的方法(Adjustment/Iterative methods):通过向模型中加入一些带标签的伪数据来修改模型。

图7 基于迭代/调整的domain adaptation方法

3、单例学习(One-Shot Learning)

单例学习是迁移学习/Domain Adaptation的一个特例。模型在source domain训练好之后,迁移到target domain,target domain只用一个标记样本去训练模型的参数就可以了。

图8 平衡车单例识别

比如识别平衡车。训练时,source domain有大量标记样本,比如自行车、独行车、摩托车和轿车等类别,模型可以从source domain学到表示车的有效特征,比如有轮子、轮子尺寸大小、有踏板、方向盘或龙头等。测试时,在target domian,只需要一个或很少一些target domain的标记样本,比如只需要在模型可以准确识别车的条件下,给模型一张平衡车的标记图片就可以了。

获取最新消息链接:获取最新消息快速通道 - lqfarmer的博客 - 博客频道 - CSDN.NET

4、零例学习(Zero-Shot Learning)或零数据学习(Zero-data Learning)

零例学习是迁移学习/Domain Adaptation的一个特例。source domain存在带标签的数据,模型在source domain训练好之后,因为在第一阶段的学习已经可以很好分离类别,模型迁移到target domain直接可以使用,不需要任务target domain的标记样本去调整模型参数。source domain 和target domain共享信息。

图9 美国金丝雀的零例识别

比如美国金丝雀的识别。训练时,source domain有大量关于金丝雀的带标记的图片,以及关于图片的额外先验知识(属性,图片的描述,....),我们可以通过训练把先验知识加入到图片识别中去。测试时,模型可以准确识别出金丝雀,通过关于图片额外描述信息知道这是美国的的金丝雀,这样很容易把模型推广到新的类别,在测试集上,把见过的和未见过的图像类别合并起来。

往期精彩内容推荐

模型汇总-14 多任务学习-Multitask Learning概述
<纯干货-5>Deep Reinforcement Learning深度强化学习_论文大集合
《纯干货-6》Stanford University 2017年最新《Tensorflow与深度学习实战》视频课程分享
<深度学习优化策略-4> 基于Gate Mechanism的激活单元GTU、GLU
<视频教程-2>生成对抗网络GAN视频教程part6-完整版
「真诚赞赏,手留余香」

这篇关于模型汇总15 领域适应性Domain Adaptation、One-shot/zero-shot Learning概述的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607199

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

这15个Vue指令,让你的项目开发爽到爆

1. V-Hotkey 仓库地址: github.com/Dafrok/v-ho… Demo: 戳这里 https://dafrok.github.io/v-hotkey 安装: npm install --save v-hotkey 这个指令可以给组件绑定一个或多个快捷键。你想要通过按下 Escape 键后隐藏某个组件,按住 Control 和回车键再显示它吗?小菜一碟: <template

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费