AI绘画风格化实战

2024-01-15 00:52
文章标签 实战 ai 绘画 风格化

本文主要是介绍AI绘画风格化实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在社交软件和短视频平台上,我们时常能看到各种特色鲜明的视觉效果,比如卡通化的图片和中国风的视频剪辑。这些有趣的风格化效果其实都是图像风格化技术的应用成果。

风格化效果举例

MidLibrary 这个网站提供了不同的图像风格,每一种都带有鲜明的特色。
MidLibrary

它总共包含了以下几大类别的样式:

  • 艺术技法(Artistic Techniques):367种
  • 艺术流派和题材(Genres + Art Movements):286种
  • 标题(Titles):256种
  • 画家(Painters):1308种
  • 插画师(Illustrators):820种
  • 摄影师(Photographers):637种
  • 各种艺术家(Various Artists):254种
  • 雕塑家和装置艺术家(Sculptors + Installation Artists):212种
  • 设计师(Designers):145种
  • 时装设计师(Fashion Designers):125种
  • 导演(Filmmakers):104种
  • 建筑师(Architects):100种
  • 街头艺术家(Street Artists):57种
  • 版画家(Printmakers):34种

总共有4705种不同的艺术风格被收录在这个库中。从具体的艺术家,画派,题材等多个维度对 Midjourney 的图片风格进行了分类和汇总,可以说是非常全面和系统的一个Midjourney样式参考库。这对使用Midjourney的用户来说可以提供很大的便利和灵感。
https://midlibrary.io/styles/sandra-boynton
在这里插入图片描述
在这里插入图片描述

图生图代码实战

关于图生图背后的原理,前面文章有讲过。在 ControlNet 提出之前,我们在各种短视频平台上看到的图像风格化效果,大多是使用图生图的方法来完成的。我们简单回顾一下图生图背后的原理。在图生图中,我们对原始图像进行加噪,通过重绘强度这个参数控制加噪的步数,并把加噪的结果作为图像生成的初始潜在表示,然后使用你提供的 prompt 来引导输出图像的风格。

AI绘画Stable Diffusion关键技术解析

import requests
import torch
from PIL import Image
from io import BytesIOfrom diffusers import StableDiffusionImg2ImgPipelinedevice = "cuda"
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("zhyemmmm/ToonYou")
pipe = pipe.to(device)url = "https://ice.frostsky.com/2023/08/26/2c809fbfcb030dd8a97af3759f37ee29.png"#
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((512, 512))prompt = "1girl, fashion photography"images = []# 我们的重绘强度分别设置为0.05, 0.15, 0.25, 0.35, 0.5, 0.75
for strength in [0.05, 0.15, 0.25, 0.35, 0.5, 0.75]:image = pipe(prompt=prompt, image=init_image, strength=strength, guidance_scale=7.5).images[0]images.append(image)

1.导入需要的库:requests用于网络请求,torch为深度学习框架,PIL用于图像处理,BytesIO用于在内存中读取网络图片。

2.初始化Stable Diffusion的图片到图片模型,加载一个预训练的卡通化模型。

3.定义设备为GPU。将模型加载到GPU上。

4.定义网络图片URL,发送请求获取图片,读取为PIL Image格式。调整图片大小为512x512。

5.定义prompt,表示目标风格,这里是"1girl, fashion photography",意为单人女性时尚照。

6.定义一个空列表images,用于保存生成图片。

7.循环生成图片:分别设置不同的strength参数,代表噪声重绘强度,值越大表示风格迁移越完整。调用模型pipe生成图片,添加到images中。

8.循环结束后,images列表中即为不同程度风格迁移的图片。

在这里插入图片描述

ControlNet-使用边缘轮廓条件

我们仍旧以蒙娜丽莎的图片为例,分别使用 SDXL 模型的 Canny 控制模式和 SD1.5 模型的指令级修图控制模式。
首先,我们可以加载蒙娜丽莎的图片,并使用 Canny 算子提取图片的轮廓线。

# 加载原始图片,这里你也可以使用自己的图片
original_image = load_image("https://ice.frostsky.com/2023/08/26/2c809fbfcb030dd8a97af3759f37ee29.png").convert('RGB')# 提取Canny边缘
image = np.array(original_image)
image = cv2.Canny(image, 100, 200)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)

在这里插入图片描述
然后,我们使用 SDXL-1.0 模型和 Canny 控制条件的 ControlNet 模型。

# 加载ControlNet模型
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-Canny-sdxl-1.0-mid", torch_dtype=torch.float16)  # 加载VAE模型  
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)# 创建StableDiffusionXLControlNetPipeline管道
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16)# 启用CPU卸载加速
pipe.enable_model_cpu_offload()# 后面可以通过pipe生成控制网络图

完成这些准备工作后,我们就可以通过prompt来控制生成图像的风格了。例如可以使用下面4条prompt,依次将蒙娜丽莎图像转换为卡通风格、梵高风格、赛博朋克风格和机器人风格。当然,也建议你发挥创造力,实现更多有趣的风格转换。

# 结合ControlNet进行文生图# 这里可以更换为你想要的风格,只需要修改prompt即可
prompt = "a smiling woman, winter backbround, cartoon style"
# prompt = "a smiling woman, summer backbround, van gogh style"
# prompt = "a smiling woman, busy city, cyberpunk style"
# prompt = "a smiling robot"# 设置随机种子
generator = torch.manual_seed(1025) # 设置负prompt,避免生成不合需求的内容
negative_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, Normal quality, jpeg artifacts, signature, watermark, username, blurry"# 设置ControlNet条件缩放参数  
controlnet_conditioning_scale = 0.6  # 生成图像
images = pipe([prompt]*2, # 提示 num_inference_steps=50, negative_prompt=[negative_prompt]*2, image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,generator = generator
).images

在这里插入图片描述

ControlNet-使用指令级修图模式

指令修图模式下,只需提供指令式提示,说明执行的转换操作,ControlNet 即可生成目标图像。比如让图像着火,无需添加复杂信息,在指令修图模式中说明“add fire”,整个画面立即燃起火焰。显然,指令修图模式更加灵活高效,无需额外控制条件输入(如轮廓线等),即可生成新图像。这种能力是否可用于图像风格化?当然可以。
我们仍以蒙娜丽莎画像为例,先加载 SD1.5 基础模型和对应的 ControlNet 指令修图模型。

# 加载ControlNet模型
checkpoint = "lllyasviel/control_v11e_sd15_ip2p"
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)# 创建StableDiffusionControlNetPipeline管道
pipe = StableDiffusionControlNetPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16) # 启用CPU卸载加速
pipe.enable_model_cpu_offload()  # 定义prompt
prompt = "make it spring"
prompt = "make it summer" 
prompt = "make it autumn"
prompt = "make it winter"# 设置随机种子
generator = torch.manual_seed(0)# 生成图像  
image_style1 = pipe(prompt, num_inference_steps=30, generator=generator, image=original_image).images[0]# 通过pipe和prompt控制生成不同季节风格图片

在这里插入图片描述

模型融合的技巧

实际上,除了使用自己训练的模型进行风格化,使用不同SD模型进行融合也是一种常见技巧,可以快速调制出特色鲜明的AI绘画风格。

模型融合本质上是对多个模型进行加权混合,得到一个合并后的新模型。比如希望将Anything V5和ToonYou两个模型进行融合,只需给每个模型的权重分别乘以一个系数,然后相加。在WebUI中,可以选择Checkpoint Merger窗口完成模型融合。例如在Weighted sum模式下,融合后模型权重计算方式如下:
Anything V5模型
ToonYou

*新模型权重 = 模型A (1 - M) + 模型B * M

其中M为加权系数。通过调节系数大小可以控制不同模型在融合模型中的贡献度。
在这里插入图片描述
在 Add difference 这个模式下,我们需要提供三个模型,将模型 B 和模型 C 的权重差值以一定的权重加到原始模型 A 上。融合后模型权重的计算方式你可以看后面的公式,公式中的 M 仍是加权系数。

新模型权重 = 模型 A + (模型 B - 模型 C) * M

在这里插入图片描述
我们可以分别测试一下融合模型的生成效果。对于 Weighted sum 模式,我们将 Anything V5 模型和 ToonYou 模型按照加权系数 0.5 的方式进行融合。你可以点开图片查看我的参数设置。
在这里插入图片描述
在这里插入图片描述

Prompt:1girl, fashion photography [女生形象]
Prompt:1boy, fashion photography  [男生形象]
Negative Prompt:EasyNegative 
采样器:Eular a
随机种子:603579160
采样步数:20
分辨率:512x512
CFG Scale: 7

结语

人生如朝露,醒时同放光。众生平等贵,固然艺术家。执笔挥毫处,情怀高下立。非有天分休,谈何尽绚烂。

欢迎留言讨论!

我们分别以图生图、ControlNet 边缘条件和 ControlNet 指令修图为例,完成了图像风格化的项目实战,并探讨了多模型融合调制新模型的原理和 WebUI 操作技巧。

我是李孟聊AI,独立开源软件开发者,SolidUI作者,对于新技术非常感兴趣,专注AI和数据领域,如果对我的文章内容感兴趣,请帮忙关注点赞收藏,谢谢!

这篇关于AI绘画风格化实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607087

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...