matplotlib:热图、箱形图、小提琴图、堆叠面积图、雷达图、子图

2024-01-14 21:28

本文主要是介绍matplotlib:热图、箱形图、小提琴图、堆叠面积图、雷达图、子图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介:在数字化的世界里,从Web、HTTP到App,数据无处不在。但如何将这些复杂的数据转化为直观、易懂的信息?本文将介绍六种数据可视化方法,帮助你更好地理解和呈现数据。

热图 (Heatmap):热图能有效展示用户在网页或应用界面上的点击分布。例如,它可以用来分析用户最常点击的网页区域,帮助优化页面布局和用户体验。

箱形图 (Box Plot):箱形图非常适合分析网站访问时间或服务器响应时间等数据。它能展示数据的中位数、四分位数和异常值,对于发现性能瓶颈或优化响应策略尤为有用。

小提琴图 (Violin Plot):当你需要更深入地了解数据分布时,小提琴图是一个好选择。比如,在分析App的使用时长时,它不仅显示了数据的分布范围,还展示了数据密度。

堆叠面积图 (Stacked Area Chart):堆叠面积图适用于展示网站流量或应用使用量随时间的变化。通过堆叠不同来源的访问量,你可以直观地看到各部分对总流量的贡献。

雷达图 (Radar Chart):雷达图是比较不同产品或服务性能的理想工具。例如,对比不同的Web服务,你可以在多个维度(如响应时间、用户满意度、访问量)上进行全面比较。

历史攻略:

matplotlib:散点图、饼状图

Python:opencv画点、圆、线、多边形、矩形

Python:数据可视化pyechart

python:数据可视化 - 动态

案例源码:

# -*- coding: utf-8 -*-
# time: 2024/01/13 08:18
# file: plt_demo.py
# 公众号: 玩转测试开发
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np# case1 - 热图 (Heatmap) - 模拟数据:页面区域的点击率
click_data = np.random.rand(10, 10)
sns.heatmap(click_data, cmap='viridis')
plt.title('Web Page Click Heatmap')
plt.show()# case2 - 箱形图 (Box Plot) - 模拟数据:网站每天的响应时间
response_times = np.random.normal(loc=300, scale=50, size=365)sns.boxplot(response_times)
plt.title('Daily Website Response Times')
plt.xlabel('Response Time (ms)')
plt.show()# case3 - 小提琴图 (Violin Plot) - 模拟数据:App每日使用时长
usage_times = np.random.normal(loc=120, scale=30, size=1000)sns.violinplot(data=usage_times)
plt.title('Daily App Usage Times')
plt.xlabel('Usage Time (minutes)')
plt.show()# case4 - 堆叠面积图 (Stacked Area Chart) - 模拟数据:三个来源的网站流量
source1 = np.random.rand(365)
source2 = np.random.rand(365)
source3 = np.random.rand(365)plt.stackplot(range(365), source1, source2, source3, labels=['Source 1', 'Source 2', 'Source 3'])
plt.title('Website Traffic by Source')
plt.xlabel('Day of Year')
plt.ylabel('Traffic')
plt.legend(loc='upper left')
plt.show()# case5 - 雷达图 (Radar Chart) - 模拟数据:Web服务的性能指标
labels = ['Response Time', 'User Satisfaction', 'Feature Richness', 'Ease of Use', 'Reliability']
stats = [3, 5, 2, 4, 5]
stats2 = [4, 3, 3, 2, 5]
stats3 = [2, 4, 5, 5, 3]# 为雷达图创建角度数组
num_vars = len(labels)
angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist()
angles += angles[:1]  # 闭合图形stats = stats + stats[:1]
stats2 = stats2 + stats2[:1]
stats3 = stats3 + stats3[:1]fig, ax = plt.subplots(figsize=(6, 6), subplot_kw=dict(polar=True))# 绘制雷达图
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
ax.plot(angles, stats2, 'o-', linewidth=2)
ax.fill(angles, stats2, alpha=0.25)
ax.plot(angles, stats3, 'o-', linewidth=2)
ax.fill(angles, stats3, alpha=0.25)# 设置角度标签
ax.set_thetagrids(np.degrees(angles[:-1]), labels)plt.title('Web Service Performance Comparison')
plt.show()# case6 - 子图数据:模拟Web和App的用户行为数据
days = np.arange(1, 31)
web_traffic = np.random.randint(100, 1000, size=30)
app_traffic = np.random.randint(100, 1000, size=30)
web_clicks = np.random.randint(10, 100, size=30)
app_clicks = np.random.randint(10, 100, size=30)# 创建子图布局
fig, axs = plt.subplots(2, 2, figsize=(12, 10))# 第一个子图:Web流量
axs[0, 0].plot(days, web_traffic, marker='o', color='tab:blue')
axs[0, 0].set_title('Daily Web Traffic')
axs[0, 0].set_xlabel('Day of the Month')
axs[0, 0].set_ylabel('Number of Users')# 第二个子图:App流量
axs[0, 1].plot(days, app_traffic, marker='s', color='tab:green')
axs[0, 1].set_title('Daily App Traffic')
axs[0, 1].set_xlabel('Day of the Month')
axs[0, 1].set_ylabel('Number of Users')# 第三个子图:Web点击量
axs[1, 0].bar(days, web_clicks, color='tab:orange')
axs[1, 0].set_title('Daily Web Clicks')
axs[1, 0].set_xlabel('Day of the Month')
axs[1, 0].set_ylabel('Number of Clicks')# 第四个子图:App点击量
axs[1, 1].bar(days, app_clicks, color='tab:red')
axs[1, 1].set_title('Daily App Clicks')
axs[1, 1].set_xlabel('Day of the Month')
axs[1, 1].set_ylabel('Number of Clicks')# 调整布局
plt.tight_layout()
plt.show()

运行结果:

图片

结论:选择合适的可视化方法不仅能帮助我们更快地理解数据,还能让我们的分析结果更容易被他人理解。无论是数据分析师、产品经理还是营销人员,掌握这些技巧都将使你在数据洪流中游刃有余。欢迎分享你的数据可视化经验,一起探讨如何让数据说话。

这篇关于matplotlib:热图、箱形图、小提琴图、堆叠面积图、雷达图、子图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606562

相关文章

matplotlib绘图中插入图片

在使用matplotlib下的pyplot绘图时,有时处于各种原因,需要采用类似贴图的方式,插入外部的图片,例如添加自己的logo,或者其他的图形水印等。 一开始,查找到的资料都是使用imshow,但是这会有带来几个问题,一个是图形的原点发生了变化,另外一个问题就是图形比例也产生了变化,当然最大的问题是图形占据了整个绘图区域,完全喧宾夺主了,与我们设想的只在绘图区域中占据很小的一块不相符。 经

matplotlib中文乱码问题

在使用Matplotlib进行数据可视化的过程中,经常会遇到中文乱码的问题。显示乱码是由于编码问题导致的,而matplotlib 默认使用ASCII 编码,但是当使用pyplot时,是支持unicode编码的,只是默认字体是英文字体,导致中文无法正常显示,所以显示中文乱码。 文本使用系统默认字体、手动指定字体、使用字体管理器来解决。 一、系统默认字体(全局设置字体) 在Matplotlib中

Matplotlib图像读取和输出及jpg、png格式对比,及透明通道alpha设置

图像像素值 图像像素值一般size为3,也就是通道数,分别代表R,G,B,如果只有单一 一个值则表示灰度值,也就是说一张二维图片,当长和宽都为1080时,那么若是灰度图像,图像尺寸为(1080,1080,1)若是RGB图像则为(1080,1080,3), jpg、png图像格式 jpg图像的灰度值范围和RGB范围为[0,255],数值类型为uint8,也就是无符号整数 png图像的灰度值范

使用matplotlib绘制散点图、柱状图和饼状图-学习篇

一、散点图 Python代码如下: num_points = 100x = np.random.rand(num_points) #x点位随机y = np.random.rand(num_points) #y点位随机colors = np.random.rand(num_points) #颜色随机sizes = 1000 * np.random.rand(num_points) # 大

Xiaojie雷达之路---雷达间干扰(二)置零法对干扰抑制

Hello,大家好,我是Xiaojie,欢迎大家能够和Xiaojie来一起学习毫米波雷达知识,本篇文章主要是介绍一下时域置零对雷达间干扰抑制的效果,一起来看看吧!!! 文章目录 前言正文原理性介绍代码 前言 在上一篇文章中介绍了BPM对雷达间干扰抑制的方法,而本篇文章是采用时域置零的方法进行雷达间干扰抑制 效果图: 视频如下: 雷达间干扰 正文

利用向量积(叉积)计算三角形的面积和多边形的面积(hdu2036)

开始撸计算几何题目了。。。。。。。 预备知识:叉乘求多边形面积 参考证明资料: 公式证明: http://www.cnblogs.com/xiexinxinlove/p/3708147.html 高中知识: http://wenku.baidu.com/view/867e6edfad51f01dc281f11a.html #include<stdio.h>#inclu

百度之星初赛1006(计算几何:能包含凸包的最小矩形面积)

矩形面积    Accepts: 717    Submissions: 1619  Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 小度熊有一个桌面,小度熊剪了很多矩形放在桌面上,小度熊想知道能把这些

HDU 2036 求多边形面积

题目: http://acm.hdu.edu.cn/showproblem.php?pid=2036 对用(按逆时针排列)描述的多边形,其面积为: 若按顺时针排列,取负数即可。 资料链接: http://zh.wikipedia.org/wiki/%E5%A4%9A%E8%BE%B9%E5%BD%A2 不知道这公式是咋推导的,网上找不到,先留着。 #

Matplotlib通过axis()配置坐标轴数据详解

坐标轴范围设置 axis()可以直接传入列表[xmin,xmax,ymin,ymax]进行范围设置, 分别可以使用plt.axis()或者画布对象.axis()进行配置 import numpy as npimport matplotlib.pyplot as pltx = np.linspace(0, 20, 100)y = x*2plt.plot(x, y, 'r')plt.ax

【R语言 可视化】R语言画雷达图

1、安装插件 github网址: https://github.com/ricardo-bion/ggradar devtools::install_github("ricardo-bion/ggradar")install.packages("knitr") 2、效果图 3、源代码 rm(list=ls())gc()library(ggradar)mydata<-ma