【书生·浦语】大模型实战营——第五课笔记

2024-01-14 14:44

本文主要是介绍【书生·浦语】大模型实战营——第五课笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

教程文档:https://github.com/InternLM/tutorial/blob/main/lmdeploy/lmdeploy.md
视频链接:https://www.bilibili.com/video/BV1iW4y1A77P

大模型部署背景

关于模型部署

通常需要模型压缩和硬件加速
在这里插入图片描述

大模型的特点

1、显存、内存花销巨大
2、动态shape,输入输出数量不定
3、相对视觉模型,LLM结构简单,大部分都是decoder-only
在这里插入图片描述

大模型部署挑战

大模型的特点所带来的部署挑战:
1、设备:如何应对巨大的存储问题?
2、推理:如何加速token生成速度?如何有效管理、使用内存?
3、服务:如何提升系统整体吞吐量,如何降低响应时间?
在这里插入图片描述

大模型部署方案

在这里插入图片描述
continuous batch用于解决动态batch问题
云端常用的部署方案:deepspeed、tensorrt-llm、vllm、Imdepoly
移动端:llama.cpp(对移动端设备做了优化)、mlc-llm

LMDepoly简介

LMDeploy是LLM在nvidia设备上部署的全流程解决方案。(还没有涉及到移动端)

关于轻量化:
1、权重的4bit量化
2、k v cache的8bit量化

关于推理引擎:
1、turbomind,是LMDeploy的一个创新点
2、pytorch

关于服务:
1、api server
2、gradio:主要用于演示demo
3、triton inference

在这里插入图片描述

在这里插入图片描述
LMDeploy比vLLM的性能要好

核心功能——量化

在这里插入图片描述
量化后,最大的输出长度变为原来的4倍。

为什么做Weight Only的量化?


LLM中存在两种密集场景:
1、计算密集:神经网络参数量大,前向一次要经过很多计算,这个我是理解的
2、访存密集:读取什么数据呢?这个我很疑惑,群里有大佬说是KV Cache的访存

大部分时候,LLM访存才是性能瓶颈的原因,而不是数值计算的时候。

为什么只做weight only的量化?一举多得
1、将FP16的模型权重量化为int4,访存量降为FP16的1/4,降低了访存成本,提高了decoding速度(不太理解具体的过程?)
2、节省了显存

如何做weight only的量化?

使用AWQ算法。
在这里插入图片描述
AWQ的思想:在矩阵计算中,有一部分参数是非常重要的,所以其他参数可以量化来降低精度。

推理引擎TurboMind

在这里插入图片描述

持续批处理

continuous batch
两个重要的概念:
1、请求队列
2、batch slot
在这里插入图片描述
在这里插入图片描述
流程:
在这里插入图片描述

有状态的推理

在这里插入图片描述
问的时候,历史消息放在模型推理处

blocked k/v cache

在这里插入图片描述
k、v是transformer里attention计算产生的东西。后面计算需要依赖于k,v。
blocked指的是分块。
只存当前使用的k,v。

高性能cuda kernel

在这里插入图片描述
flash attention、fast w4a16,kv8、split-k decoding、算子融合这四个东西都是为了加快token生成速度的。

推理服务 api server

可以通过一个简单的命令,运行起一个服务
在这里插入图片描述

这篇关于【书生·浦语】大模型实战营——第五课笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605524

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕