扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用

2024-01-14 13:20

本文主要是介绍扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论、公式和应用

引言

卡尔曼滤波是一种广泛应用于估计动态系统状态的技术,但当系统的动态模型或测量模型是非线性的时候,传统的卡尔曼滤波方法就显得无能为力。扩展卡尔曼滤波通过引入非线性系统的雅可比矩阵,弥补了这一不足,成为处理非线性系统估计的有力工具。本文将介绍扩展卡尔曼滤波的理论基础、数学公式,并通过Python代码示例演示其在一维维系统中的应用。

一、扩展卡尔曼滤波的基本理论

扩展卡尔曼滤波是对传统卡尔曼滤波的一种扩展,主要应用于非线性系统。它通过在卡尔曼滤波的预测和更新步骤中引入非线性映射(对非线性系统采用线性化的方式),解决了卡尔曼滤波在处理非线性问题时的局限性。

二、扩展卡尔曼滤波的数学公式

预测步骤:
  1. 状态预测:
    x ^ k − = f ( x ^ k − 1 , u k − 1 ) \begin{equation}\hat{x}_{k}^- = f(\hat{x}_{k-1}, u_{k-1})\end{equation} x^k=f(x^k1,uk1)

  2. 协方差预测:
    P k − = A k P k − 1 A k T + Q k \begin{equation} P_{k}^- = A_{k} P_{k-1} A_{k}^T + Q_{k}\end{equation} Pk=AkPk1AkT+Qk

    其中, A k A_{k} Ak 是状态预测函数 f ( ⋅ ) f(\cdot) f() 的雅可比矩阵,计算公式为:
    A k = ∂ f ∂ x ∣ x ^ k − 1 , u k − 1 \begin{equation}A_{k} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, u_{k-1}}\end{equation} Ak=xf x^k1,uk1

更新步骤:
  1. 卡尔曼增益计算:
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \begin{equation}K_{k} = P_{k}^- H_{k}^T (H_{k} P_{k}^- H_{k}^T + R_{k})^{-1} \end{equation} Kk=PkHkT(HkPkHkT+Rk)1

  2. 状态更新:
    x ^ k = x ^ k − + K k ( z k − h ( x ^ k − ) ) \begin{equation}\hat{x}_{k} = \hat{x}_{k}^- + K_{k} (z_{k} - h(\hat{x}_{k}^-))\end{equation} x^k=x^k+Kk(zkh(x^k))

  3. 协方差更新:
    P k = ( I − K k H k ) P k − \begin{equation}P_{k} = (I - K_{k} H_{k}) P_{k}^-\end{equation} Pk=(IKkHk)Pk

    其中, H k H_{k} Hk是测量函数 h ( ⋅ ) h(\cdot) h() 的雅可比矩阵,计算公式为:
    H k = ∂ h ∂ x ∣ x ^ k − \begin{equation}H_{k} = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^-} \end{equation} Hk=xh x^k

三、扩展卡尔曼滤波与线性卡尔曼滤波的优势对比

扩展卡尔曼滤波相对于线性卡尔曼滤波的优势在于其能够处理非线性系统。线性卡尔曼滤波要求系统的动态模型和测量模型是线性的,而扩展卡尔曼滤波通过引入非线性映射,使得在非线性系统中仍能有效估计状态。

四、扩展卡尔曼滤波的Python代码示例

一维系统应用

# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import matplotlib.pyplot as pltdef f(x, u):return 0.5 * x + 25 * x / (1 + x**2) + 8 * np.cos(1.2 * u)def h(x):return 0.05 * x**2# 初始化
x_hat = np.array([0.0])
P = np.array([1.0])
Q = 1e-5
R = 0.1# 模拟数据
true_states = [f(x, 0) for x in range(100)]
measurements = [h(x) + np.random.normal(0, np.sqrt(R)) for x in true_states]# 扩展卡尔曼滤波
filtered_states = []for z in measurements:# 预测步骤x_hat_minus = f(x_hat, 0)A = 0.5 - (25 * x_hat) / (1 + x_hat**2)**2 + 8 * np.cos(1.2 * 0)P_minus = A * P * A + Q# 更新步骤H = 0.05 * x_hatK = P_minus * H / (H * P_minus * H + R)x_hat = x_hat_minus + K * (z - h(x_hat_minus))P = (1 - K * H) * P_minusfiltered_states.append(x_hat[0])filtered_states = np.array(filtered_states)# 可视化结果
plt.figure(figsize=(12, 6))plt.plot(true_states, label='True States')
plt.plot(measurements, 'ro', label='Measurements')
plt.plot(filtered_states, label='Filtered States')plt.title('Extended Kalman Filtering - 1D System')
plt.legend()
plt.show()

在这里插入图片描述

这个示例分别展示了一维系统中扩展卡尔曼滤波的应用。在这个例子中,我们通过引入非线性映射函数 f ( ⋅ ) f(\cdot) f() ( h ( ⋅ ) (h(\cdot) (h(),以及对应的雅可比矩阵,成功处理了非线性系统的状态估计问题。这突显了扩展卡尔曼滤波在实际应用中的优越性。

结论

扩展卡尔曼滤波(EKF)作为卡尔曼滤波的扩展,成功地解决了处理非线性系统估计的问题,通过引入雅可比矩阵,使得非线性映射能够得到更准确的估计。总体而言,EKF在实际应用中表现出色,为状态估计提供了有效工具。

优势:

  1. 处理非线性系统: EKF能够有效地处理非线性系统,通过引入非线性映射的雅可比矩阵,提高了状态估计的准确性。

  2. 灵活性: 相对于线性卡尔曼滤波,EKF更加灵活,适用于包含一定程度非线性的实际系统。

缺点:

  1. 计算复杂度: EKF的计算复杂度相对较高,特别是在高维系统或强非线性系统中,计算雅可比矩阵和协方差更新可能变得复杂且耗时。

  2. 对初始条件敏感: EKF对初始条件较为敏感,初始估计的准确性直接影响了滤波器的性能。

  3. 线性化误差: 由于是通过线性化非线性映射,EKF可能会引入线性化误差,尤其在非线性变化剧烈的区域。

在应用EKF时,需要权衡计算复杂度和准确性,并根据具体问题调整相关参数,以取得最佳的估计效果。

这篇关于扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605296

相关文章

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

springboot filter实现请求响应全链路拦截

《springbootfilter实现请求响应全链路拦截》这篇文章主要为大家详细介绍了SpringBoot如何结合Filter同时拦截请求和响应,从而实现​​日志采集自动化,感兴趣的小伙伴可以跟随小... 目录一、为什么你需要这个过滤器?​​​二、核心实现:一个Filter搞定双向数据流​​​​三、完整代码

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1