扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用

2024-01-14 13:20

本文主要是介绍扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论、公式和应用

引言

卡尔曼滤波是一种广泛应用于估计动态系统状态的技术,但当系统的动态模型或测量模型是非线性的时候,传统的卡尔曼滤波方法就显得无能为力。扩展卡尔曼滤波通过引入非线性系统的雅可比矩阵,弥补了这一不足,成为处理非线性系统估计的有力工具。本文将介绍扩展卡尔曼滤波的理论基础、数学公式,并通过Python代码示例演示其在一维维系统中的应用。

一、扩展卡尔曼滤波的基本理论

扩展卡尔曼滤波是对传统卡尔曼滤波的一种扩展,主要应用于非线性系统。它通过在卡尔曼滤波的预测和更新步骤中引入非线性映射(对非线性系统采用线性化的方式),解决了卡尔曼滤波在处理非线性问题时的局限性。

二、扩展卡尔曼滤波的数学公式

预测步骤:
  1. 状态预测:
    x ^ k − = f ( x ^ k − 1 , u k − 1 ) \begin{equation}\hat{x}_{k}^- = f(\hat{x}_{k-1}, u_{k-1})\end{equation} x^k=f(x^k1,uk1)

  2. 协方差预测:
    P k − = A k P k − 1 A k T + Q k \begin{equation} P_{k}^- = A_{k} P_{k-1} A_{k}^T + Q_{k}\end{equation} Pk=AkPk1AkT+Qk

    其中, A k A_{k} Ak 是状态预测函数 f ( ⋅ ) f(\cdot) f() 的雅可比矩阵,计算公式为:
    A k = ∂ f ∂ x ∣ x ^ k − 1 , u k − 1 \begin{equation}A_{k} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, u_{k-1}}\end{equation} Ak=xf x^k1,uk1

更新步骤:
  1. 卡尔曼增益计算:
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \begin{equation}K_{k} = P_{k}^- H_{k}^T (H_{k} P_{k}^- H_{k}^T + R_{k})^{-1} \end{equation} Kk=PkHkT(HkPkHkT+Rk)1

  2. 状态更新:
    x ^ k = x ^ k − + K k ( z k − h ( x ^ k − ) ) \begin{equation}\hat{x}_{k} = \hat{x}_{k}^- + K_{k} (z_{k} - h(\hat{x}_{k}^-))\end{equation} x^k=x^k+Kk(zkh(x^k))

  3. 协方差更新:
    P k = ( I − K k H k ) P k − \begin{equation}P_{k} = (I - K_{k} H_{k}) P_{k}^-\end{equation} Pk=(IKkHk)Pk

    其中, H k H_{k} Hk是测量函数 h ( ⋅ ) h(\cdot) h() 的雅可比矩阵,计算公式为:
    H k = ∂ h ∂ x ∣ x ^ k − \begin{equation}H_{k} = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^-} \end{equation} Hk=xh x^k

三、扩展卡尔曼滤波与线性卡尔曼滤波的优势对比

扩展卡尔曼滤波相对于线性卡尔曼滤波的优势在于其能够处理非线性系统。线性卡尔曼滤波要求系统的动态模型和测量模型是线性的,而扩展卡尔曼滤波通过引入非线性映射,使得在非线性系统中仍能有效估计状态。

四、扩展卡尔曼滤波的Python代码示例

一维系统应用

# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import matplotlib.pyplot as pltdef f(x, u):return 0.5 * x + 25 * x / (1 + x**2) + 8 * np.cos(1.2 * u)def h(x):return 0.05 * x**2# 初始化
x_hat = np.array([0.0])
P = np.array([1.0])
Q = 1e-5
R = 0.1# 模拟数据
true_states = [f(x, 0) for x in range(100)]
measurements = [h(x) + np.random.normal(0, np.sqrt(R)) for x in true_states]# 扩展卡尔曼滤波
filtered_states = []for z in measurements:# 预测步骤x_hat_minus = f(x_hat, 0)A = 0.5 - (25 * x_hat) / (1 + x_hat**2)**2 + 8 * np.cos(1.2 * 0)P_minus = A * P * A + Q# 更新步骤H = 0.05 * x_hatK = P_minus * H / (H * P_minus * H + R)x_hat = x_hat_minus + K * (z - h(x_hat_minus))P = (1 - K * H) * P_minusfiltered_states.append(x_hat[0])filtered_states = np.array(filtered_states)# 可视化结果
plt.figure(figsize=(12, 6))plt.plot(true_states, label='True States')
plt.plot(measurements, 'ro', label='Measurements')
plt.plot(filtered_states, label='Filtered States')plt.title('Extended Kalman Filtering - 1D System')
plt.legend()
plt.show()

在这里插入图片描述

这个示例分别展示了一维系统中扩展卡尔曼滤波的应用。在这个例子中,我们通过引入非线性映射函数 f ( ⋅ ) f(\cdot) f() ( h ( ⋅ ) (h(\cdot) (h(),以及对应的雅可比矩阵,成功处理了非线性系统的状态估计问题。这突显了扩展卡尔曼滤波在实际应用中的优越性。

结论

扩展卡尔曼滤波(EKF)作为卡尔曼滤波的扩展,成功地解决了处理非线性系统估计的问题,通过引入雅可比矩阵,使得非线性映射能够得到更准确的估计。总体而言,EKF在实际应用中表现出色,为状态估计提供了有效工具。

优势:

  1. 处理非线性系统: EKF能够有效地处理非线性系统,通过引入非线性映射的雅可比矩阵,提高了状态估计的准确性。

  2. 灵活性: 相对于线性卡尔曼滤波,EKF更加灵活,适用于包含一定程度非线性的实际系统。

缺点:

  1. 计算复杂度: EKF的计算复杂度相对较高,特别是在高维系统或强非线性系统中,计算雅可比矩阵和协方差更新可能变得复杂且耗时。

  2. 对初始条件敏感: EKF对初始条件较为敏感,初始估计的准确性直接影响了滤波器的性能。

  3. 线性化误差: 由于是通过线性化非线性映射,EKF可能会引入线性化误差,尤其在非线性变化剧烈的区域。

在应用EKF时,需要权衡计算复杂度和准确性,并根据具体问题调整相关参数,以取得最佳的估计效果。

这篇关于扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605296

相关文章

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

JavaWeb 中的 Filter组件详解

《JavaWeb中的Filter组件详解》本文详细介绍了JavaWeb中的Filter组件,包括其基本概念、工作原理、核心接口和类、配置方式以及常见应用示例,Filter可以实现请求预处理、响应后... 目录JavaWeb 中的 Filter 详解1. Filter 基本概念1.1 什么是 Filter1.

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动