扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用

2024-01-14 13:20

本文主要是介绍扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论、公式和应用

引言

卡尔曼滤波是一种广泛应用于估计动态系统状态的技术,但当系统的动态模型或测量模型是非线性的时候,传统的卡尔曼滤波方法就显得无能为力。扩展卡尔曼滤波通过引入非线性系统的雅可比矩阵,弥补了这一不足,成为处理非线性系统估计的有力工具。本文将介绍扩展卡尔曼滤波的理论基础、数学公式,并通过Python代码示例演示其在一维维系统中的应用。

一、扩展卡尔曼滤波的基本理论

扩展卡尔曼滤波是对传统卡尔曼滤波的一种扩展,主要应用于非线性系统。它通过在卡尔曼滤波的预测和更新步骤中引入非线性映射(对非线性系统采用线性化的方式),解决了卡尔曼滤波在处理非线性问题时的局限性。

二、扩展卡尔曼滤波的数学公式

预测步骤:
  1. 状态预测:
    x ^ k − = f ( x ^ k − 1 , u k − 1 ) \begin{equation}\hat{x}_{k}^- = f(\hat{x}_{k-1}, u_{k-1})\end{equation} x^k=f(x^k1,uk1)

  2. 协方差预测:
    P k − = A k P k − 1 A k T + Q k \begin{equation} P_{k}^- = A_{k} P_{k-1} A_{k}^T + Q_{k}\end{equation} Pk=AkPk1AkT+Qk

    其中, A k A_{k} Ak 是状态预测函数 f ( ⋅ ) f(\cdot) f() 的雅可比矩阵,计算公式为:
    A k = ∂ f ∂ x ∣ x ^ k − 1 , u k − 1 \begin{equation}A_{k} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, u_{k-1}}\end{equation} Ak=xf x^k1,uk1

更新步骤:
  1. 卡尔曼增益计算:
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \begin{equation}K_{k} = P_{k}^- H_{k}^T (H_{k} P_{k}^- H_{k}^T + R_{k})^{-1} \end{equation} Kk=PkHkT(HkPkHkT+Rk)1

  2. 状态更新:
    x ^ k = x ^ k − + K k ( z k − h ( x ^ k − ) ) \begin{equation}\hat{x}_{k} = \hat{x}_{k}^- + K_{k} (z_{k} - h(\hat{x}_{k}^-))\end{equation} x^k=x^k+Kk(zkh(x^k))

  3. 协方差更新:
    P k = ( I − K k H k ) P k − \begin{equation}P_{k} = (I - K_{k} H_{k}) P_{k}^-\end{equation} Pk=(IKkHk)Pk

    其中, H k H_{k} Hk是测量函数 h ( ⋅ ) h(\cdot) h() 的雅可比矩阵,计算公式为:
    H k = ∂ h ∂ x ∣ x ^ k − \begin{equation}H_{k} = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^-} \end{equation} Hk=xh x^k

三、扩展卡尔曼滤波与线性卡尔曼滤波的优势对比

扩展卡尔曼滤波相对于线性卡尔曼滤波的优势在于其能够处理非线性系统。线性卡尔曼滤波要求系统的动态模型和测量模型是线性的,而扩展卡尔曼滤波通过引入非线性映射,使得在非线性系统中仍能有效估计状态。

四、扩展卡尔曼滤波的Python代码示例

一维系统应用

# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import matplotlib.pyplot as pltdef f(x, u):return 0.5 * x + 25 * x / (1 + x**2) + 8 * np.cos(1.2 * u)def h(x):return 0.05 * x**2# 初始化
x_hat = np.array([0.0])
P = np.array([1.0])
Q = 1e-5
R = 0.1# 模拟数据
true_states = [f(x, 0) for x in range(100)]
measurements = [h(x) + np.random.normal(0, np.sqrt(R)) for x in true_states]# 扩展卡尔曼滤波
filtered_states = []for z in measurements:# 预测步骤x_hat_minus = f(x_hat, 0)A = 0.5 - (25 * x_hat) / (1 + x_hat**2)**2 + 8 * np.cos(1.2 * 0)P_minus = A * P * A + Q# 更新步骤H = 0.05 * x_hatK = P_minus * H / (H * P_minus * H + R)x_hat = x_hat_minus + K * (z - h(x_hat_minus))P = (1 - K * H) * P_minusfiltered_states.append(x_hat[0])filtered_states = np.array(filtered_states)# 可视化结果
plt.figure(figsize=(12, 6))plt.plot(true_states, label='True States')
plt.plot(measurements, 'ro', label='Measurements')
plt.plot(filtered_states, label='Filtered States')plt.title('Extended Kalman Filtering - 1D System')
plt.legend()
plt.show()

在这里插入图片描述

这个示例分别展示了一维系统中扩展卡尔曼滤波的应用。在这个例子中,我们通过引入非线性映射函数 f ( ⋅ ) f(\cdot) f() ( h ( ⋅ ) (h(\cdot) (h(),以及对应的雅可比矩阵,成功处理了非线性系统的状态估计问题。这突显了扩展卡尔曼滤波在实际应用中的优越性。

结论

扩展卡尔曼滤波(EKF)作为卡尔曼滤波的扩展,成功地解决了处理非线性系统估计的问题,通过引入雅可比矩阵,使得非线性映射能够得到更准确的估计。总体而言,EKF在实际应用中表现出色,为状态估计提供了有效工具。

优势:

  1. 处理非线性系统: EKF能够有效地处理非线性系统,通过引入非线性映射的雅可比矩阵,提高了状态估计的准确性。

  2. 灵活性: 相对于线性卡尔曼滤波,EKF更加灵活,适用于包含一定程度非线性的实际系统。

缺点:

  1. 计算复杂度: EKF的计算复杂度相对较高,特别是在高维系统或强非线性系统中,计算雅可比矩阵和协方差更新可能变得复杂且耗时。

  2. 对初始条件敏感: EKF对初始条件较为敏感,初始估计的准确性直接影响了滤波器的性能。

  3. 线性化误差: 由于是通过线性化非线性映射,EKF可能会引入线性化误差,尤其在非线性变化剧烈的区域。

在应用EKF时,需要权衡计算复杂度和准确性,并根据具体问题调整相关参数,以取得最佳的估计效果。

这篇关于扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605296

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

AI行业应用(不定期更新)

ChatPDF 可以让你上传一个 PDF 文件,然后针对这个 PDF 进行小结和提问。你可以把各种各样你要研究的分析报告交给它,快速获取到想要知道的信息。https://www.chatpdf.com/

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识