扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用

2024-01-14 13:20

本文主要是介绍扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论、公式和应用

引言

卡尔曼滤波是一种广泛应用于估计动态系统状态的技术,但当系统的动态模型或测量模型是非线性的时候,传统的卡尔曼滤波方法就显得无能为力。扩展卡尔曼滤波通过引入非线性系统的雅可比矩阵,弥补了这一不足,成为处理非线性系统估计的有力工具。本文将介绍扩展卡尔曼滤波的理论基础、数学公式,并通过Python代码示例演示其在一维维系统中的应用。

一、扩展卡尔曼滤波的基本理论

扩展卡尔曼滤波是对传统卡尔曼滤波的一种扩展,主要应用于非线性系统。它通过在卡尔曼滤波的预测和更新步骤中引入非线性映射(对非线性系统采用线性化的方式),解决了卡尔曼滤波在处理非线性问题时的局限性。

二、扩展卡尔曼滤波的数学公式

预测步骤:
  1. 状态预测:
    x ^ k − = f ( x ^ k − 1 , u k − 1 ) \begin{equation}\hat{x}_{k}^- = f(\hat{x}_{k-1}, u_{k-1})\end{equation} x^k=f(x^k1,uk1)

  2. 协方差预测:
    P k − = A k P k − 1 A k T + Q k \begin{equation} P_{k}^- = A_{k} P_{k-1} A_{k}^T + Q_{k}\end{equation} Pk=AkPk1AkT+Qk

    其中, A k A_{k} Ak 是状态预测函数 f ( ⋅ ) f(\cdot) f() 的雅可比矩阵,计算公式为:
    A k = ∂ f ∂ x ∣ x ^ k − 1 , u k − 1 \begin{equation}A_{k} = \frac{\partial f}{\partial x}\Big|_{\hat{x}_{k-1}, u_{k-1}}\end{equation} Ak=xf x^k1,uk1

更新步骤:
  1. 卡尔曼增益计算:
    K k = P k − H k T ( H k P k − H k T + R k ) − 1 \begin{equation}K_{k} = P_{k}^- H_{k}^T (H_{k} P_{k}^- H_{k}^T + R_{k})^{-1} \end{equation} Kk=PkHkT(HkPkHkT+Rk)1

  2. 状态更新:
    x ^ k = x ^ k − + K k ( z k − h ( x ^ k − ) ) \begin{equation}\hat{x}_{k} = \hat{x}_{k}^- + K_{k} (z_{k} - h(\hat{x}_{k}^-))\end{equation} x^k=x^k+Kk(zkh(x^k))

  3. 协方差更新:
    P k = ( I − K k H k ) P k − \begin{equation}P_{k} = (I - K_{k} H_{k}) P_{k}^-\end{equation} Pk=(IKkHk)Pk

    其中, H k H_{k} Hk是测量函数 h ( ⋅ ) h(\cdot) h() 的雅可比矩阵,计算公式为:
    H k = ∂ h ∂ x ∣ x ^ k − \begin{equation}H_{k} = \frac{\partial h}{\partial x}\Big|_{\hat{x}_{k}^-} \end{equation} Hk=xh x^k

三、扩展卡尔曼滤波与线性卡尔曼滤波的优势对比

扩展卡尔曼滤波相对于线性卡尔曼滤波的优势在于其能够处理非线性系统。线性卡尔曼滤波要求系统的动态模型和测量模型是线性的,而扩展卡尔曼滤波通过引入非线性映射,使得在非线性系统中仍能有效估计状态。

四、扩展卡尔曼滤波的Python代码示例

一维系统应用

# @copyright all reseved
# @author: Persist_Zhang
import numpy as np
import matplotlib.pyplot as pltdef f(x, u):return 0.5 * x + 25 * x / (1 + x**2) + 8 * np.cos(1.2 * u)def h(x):return 0.05 * x**2# 初始化
x_hat = np.array([0.0])
P = np.array([1.0])
Q = 1e-5
R = 0.1# 模拟数据
true_states = [f(x, 0) for x in range(100)]
measurements = [h(x) + np.random.normal(0, np.sqrt(R)) for x in true_states]# 扩展卡尔曼滤波
filtered_states = []for z in measurements:# 预测步骤x_hat_minus = f(x_hat, 0)A = 0.5 - (25 * x_hat) / (1 + x_hat**2)**2 + 8 * np.cos(1.2 * 0)P_minus = A * P * A + Q# 更新步骤H = 0.05 * x_hatK = P_minus * H / (H * P_minus * H + R)x_hat = x_hat_minus + K * (z - h(x_hat_minus))P = (1 - K * H) * P_minusfiltered_states.append(x_hat[0])filtered_states = np.array(filtered_states)# 可视化结果
plt.figure(figsize=(12, 6))plt.plot(true_states, label='True States')
plt.plot(measurements, 'ro', label='Measurements')
plt.plot(filtered_states, label='Filtered States')plt.title('Extended Kalman Filtering - 1D System')
plt.legend()
plt.show()

在这里插入图片描述

这个示例分别展示了一维系统中扩展卡尔曼滤波的应用。在这个例子中,我们通过引入非线性映射函数 f ( ⋅ ) f(\cdot) f() ( h ( ⋅ ) (h(\cdot) (h(),以及对应的雅可比矩阵,成功处理了非线性系统的状态估计问题。这突显了扩展卡尔曼滤波在实际应用中的优越性。

结论

扩展卡尔曼滤波(EKF)作为卡尔曼滤波的扩展,成功地解决了处理非线性系统估计的问题,通过引入雅可比矩阵,使得非线性映射能够得到更准确的估计。总体而言,EKF在实际应用中表现出色,为状态估计提供了有效工具。

优势:

  1. 处理非线性系统: EKF能够有效地处理非线性系统,通过引入非线性映射的雅可比矩阵,提高了状态估计的准确性。

  2. 灵活性: 相对于线性卡尔曼滤波,EKF更加灵活,适用于包含一定程度非线性的实际系统。

缺点:

  1. 计算复杂度: EKF的计算复杂度相对较高,特别是在高维系统或强非线性系统中,计算雅可比矩阵和协方差更新可能变得复杂且耗时。

  2. 对初始条件敏感: EKF对初始条件较为敏感,初始估计的准确性直接影响了滤波器的性能。

  3. 线性化误差: 由于是通过线性化非线性映射,EKF可能会引入线性化误差,尤其在非线性变化剧烈的区域。

在应用EKF时,需要权衡计算复杂度和准确性,并根据具体问题调整相关参数,以取得最佳的估计效果。

这篇关于扩展卡尔曼滤波(Extended Kalman Filter, EKF):理论和应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605296

相关文章

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取