精细微调技术在大型预训练模型优化中的应用

2024-01-14 04:28

本文主要是介绍精细微调技术在大型预训练模型优化中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 1 Delta微调简介
  • 2 参数微调的有效性
  • 2.1 通用知识的激发
  • 2.2 高效的优化手段
  • 3 Delta微调的类别
    • 3.1 增量式微调
    • 3.2 指定式微调
    • 3.3 重参数化方法
  • 4 统一不同微调方法
    • 4.1 整合多种微调方法
    • 4.2 动态调整微调策略
    • 4.3 超参数搜索和优化
  • 结语

前言

随着大型预训练模型在自然语言处理等领域的广泛应用,优化这些模型以适应特定任务的需求变得尤为关键。本文将深入探讨一种高效的优化手段——精细微调技术,通过对模型中很少的参数进行微小的调整,以解决实际问题,提高模型性能。

1 Delta微调简介

参数微调是一种优化大型预训练模型的高效手段,其核心思想是仅对模型的少量参数进行微小调整,即delta object,以解决特定任务或领域的具体问题。这种方法在实践中表现出色,因为预训练模型已经通过无监督学习阶段获得了广泛的通用知识。
在这里插入图片描述

预训练模型通过大规模的无监督训练学到了丰富的语言表示和通用模式,使其具备了对语言、图像等多领域的理解。参数微调通过调整模型的一小部分参数,使其更好地适应特定任务,充分利用了模型已学到的通用知识。这种优化过程可以被看作是对通用知识的扩展,使模型更专业化、更适应具体任务。

通过微调,模型能够在相对较少的标注数据上迅速适应特定领域,减少了训练成本和时间。这种方法的高效性得益于预训练模型对大规模数据的学习,使其具备了强大的表示能力。而微调过程则通过在有监督的任务上进行调整,使模型更好地捕捉任务特定的模式和信息。

2 参数微调的有效性

2.1 通用知识的激发

大型预训练模型通过无监督学习获得了丰富的通用知识。参数微调的有效性在于模型在预训练阶段学到的通用知识,这些知识可以通过微调参数在特定任务上得以体现。参数微调的成功在于大型预训练模型通过无监督学习获得的通用知识,这包括对语义、句法和世界知识的深层理解。这使得参数微调的适用范围不仅仅局限于某一特定任务,而可以轻松应对多样性的任务,从文本生成到语义理解,以及图像分类等任务。
在这里插入图片描述

2.2 高效的优化手段

传统的微调方法可能需要大规模的训练数据和计算资源,而参数微调仅涉及到模型的少量参数,因此更加高效。这一点在处理大规模模型时显得尤为重要。由于参数微调保留了预训练模型的通用表示,模型在特定任务上的微调有助于提高泛化性能。这意味着即使在相对较小的训练数据集上,模型也能更好地适应未见过的样本,表现出更强的推理和泛化能力。

3 Delta微调的类别

Delta微调的三种类别涉及到增量式微调、指定式微调和重参数化方法,这些方法旨在通过不同的策略和技术实现模型的微调,以更好地适应特定任务。

3.1 增量式微调

在增量式微调中,采用了不同的策略,包括:
在这里插入图片描述

  • Adapter-Tuning(适配器微调)

适配器微调通过引入额外的适配器参数,允许模型在不改变主干网络权重的情况下进行微调。这使得模型可以在不同任务之间共享主干结构,同时只微调特定的适配器,以适应新的任务。

  • Prefix-Tuning(前缀微调)

前缀微调引入了额外的前缀参数,这样模型可以通过微调前缀来适应不同的任务。这种方法使得模型可以通过调整前缀的方式更好地适应特定的输入要求。

  • Prompt-Tuning(提示微调)

提示微调通过引入特定的提示信息,如语言模型中的提示文本,来进行微调。这种方法使得模型可以通过微调对特定提示的响应来适应不同的任务。

3.2 指定式微调

指定式微调方法专注于微调模型的偏置而不调整权重,例如 BitFit。这种方式通过调整模型参数的一小部分,通常是偏置,以避免过度调整可能导致模型性能下降的问题。这种微调方法更注重模型在特定任务上的细微调整。

3.3 重参数化方法

重参数化方法,例如 Intrinsic Prompt Tuning 和 LoRA(Low-Rank Adaptation),通过在低维空间完成微调,减少了计算成本。这些方法利用低秩结构,使得模型优化更为高效。通过在低维度上进行微调,模型可以更快地适应新的任务,同时减少了计算资源的需求。
在这里插入图片描述

这些 Delta 微调的方法提供了一系列灵活性,可以根据具体任务的需求来选择适当的微调策略。在不同的应用场景中,选择合适的 Delta 微调方法可以有效提高模型的性能和泛化能力。

4 统一不同微调方法

为了提高微调的效果和灵活性,可以采用多种delta的协同方法,将不同的微调方法统一起来,形成更为强大的微调策略。这种协同方法可以通过结合不同的技术和策略,充分发挥它们的优势,从而更有效地适应各种任务。以下是一些统一不同微调方法的方式:

4.1 整合多种微调方法

将不同的微调方法结合起来,比如使用 Adapter-Tuning、Prefix-Tuning 和 LoRA 的组合。这样一来,模型可以同时享有适配器的灵活性、前缀微调的定制性以及低秩重参数化的高效性。整合不同方法可以更好地平衡模型的复杂性和计算效率,提高微调的整体性能。

4.2 动态调整微调策略

在实际应用中,可以根据具体任务的需求动态选择不同的微调方法。通过监测模型性能和任务特征,自动调整微调策略,以实现更好的性能。例如,在自然语言处理任务中,可以根据输入文本的特征动态选择适合的前缀或提示,以优化模型的性能。

4.3 超参数搜索和优化

使用超参数搜索和优化技术,对不同微调方法的超参数进行搜索,找到最佳组合。这可以通过使用自动机器学习工具或者专门的超参数优化算法来实现。通过精心选择超参数,可以更好地调整模型,使其在特定任务上表现更佳。

结语

精细微调技术是一项有效的优化大型预训练模型的方法,通过保留通用知识的同时,使模型更好地适应具体任务,实现了在小规模标注数据上的高效训练。这种策略在自然语言处理、计算机视觉等领域取得了显著的成功。未来,随着技术的不断发展,我们有望进一步完善和创新微调方法,提升模型性能,推动人工智能领域的发展。

这篇关于精细微调技术在大型预训练模型优化中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603936

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业