手眼标定(传统、SVD、九点) 原理及代码总结

2024-01-11 13:40

本文主要是介绍手眼标定(传统、SVD、九点) 原理及代码总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

传统手眼标定感性认识:

传统手眼标定原理图:

        Eye in hand

        Eye to hand

传统手眼标定教学视频:

传统手眼标定代码:

SVD手眼标定法原理:

SVD求解数学原理:

SVD手眼标定法代码:

九点标定法感性认识:

九点标定法代码:

九点标定法流程:

总结:


传统手眼标定感性认识:

        相机标定(一):机器人手眼标定 - 知乎

传统手眼标定原理图:

        Eye in hand

        Eye to hand

        

传统手眼标定教学视频:

        手眼标定—原理与实战(上篇)_哔哩哔哩_bilibili

        手眼标定原理与实战(下篇)_哔哩哔哩_bilibili

传统手眼标定代码:

        利用 `calibrateHandeye()` 函数

        OpenCV手眼标定(calibrateHandeye())_hello-CSDN博客_opencv手眼标定

SVD手眼标定法原理:

         相机标定(三)——手眼标定_偷得浮生半日闲-CSDN博客_相机手眼标定

SVD求解数学原理:

        ​​​​​​SVD分解(奇异值分解)求旋转矩阵_Bryan_Zhang的专栏-CSDN博客_svd求解旋转平移矩阵

SVD手眼标定法代码:

#SVD分解手眼标定法 
def rigidTransform3d(A, B):#整理传入数据形状A = np.mat(np.array(A).reshape(9, 3))B = np.mat(np.array(B).reshape(9, 3))assert len(A) == len(B)N = A.shape[0]#对十个数据取平均值mu_A = np.mean(A, axis=0)  mu_B = np.mean(B, axis=0)#对数据减去均值(中心点)AA = A - np.tile(mu_A, (N, 1))  BB = B - np.tile(mu_B, (N, 1))#计算矩阵HH = np.transpose(AA) * BB  # H = A.T * B#SVD分解U, S, Vt = np.linalg.svd(H)  #计算旋转矩阵rotationMatrix = Vt.T * U.T  # R =  V * U.T#反射矩阵检测if np.linalg.det(self.__rotationMatrix) < 0:print("Reflection detected")Vt[2, :] *= -1rotationMatrix = Vt.T * U.T#计算平移矩阵translationMatrix = -rotationMatrix * mu_A.T + mu_B.Treturn rotationMatrix, translationMatrix

 

九点标定法感性认识:

        手眼标定(九点法)_黄昏的晨曦-CSDN博客_手眼标定

    理解什么是仿射变换:

                刚体变换和仿射变换的区别_w_weixiaotao的博客-CSDN博客_刚体变换和仿射变换

九点标定法代码:

#利用像素坐标和机械手坐标(至少三个点)得到仿射矩阵,完成像素坐标到机械手坐标的转换
#origin_points_set 标定板像素坐标点集
#target_points_set 机械手抓取坐标点集
import cv2
cv2.estimateAffine2D(origin_points_set, target_points_set)

九点标定法流程:

        Eye in hand方案  、九点标定法 

        首先,将机械手移到标定板正上方

        然后,通过相机得到九个检测点在相机坐标系下的坐标p_camera

        最后,让机械手末端依次触碰九个检测点,得到检测点在机械手坐标系下的坐标p_base

        将得到的九组点分别做成A, B列表,传入函数就可以得到R,T矩阵啦

总结:

        九点标定法只能识别x,y坐标,属于2D平面标定,在标定过程中z是未知的(需要自己确定)

        如果需要实现3D抓取,需要进行传统手眼标定(棋盘格标定)或者SVD手眼标定法

        SVD手眼标定法可以实现3D标定,但是在标定的时候要知道深度信息(z是已知的

       

        实际使用中发现九点标定法最准确

        SVD和传统方法会存在一定精度问题,一般作为迭代法的初始解提高精度

       

这篇关于手眼标定(传统、SVD、九点) 原理及代码总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594546

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000