利用AVX、OpenMP进行矩阵乘加速

2024-01-11 03:20
文章标签 进行 加速 矩阵 openmp avx

本文主要是介绍利用AVX、OpenMP进行矩阵乘加速,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

初学优化,学疏才浅,还请斧正

矩阵乘:(必须满足A矩阵的列数等于B矩阵的行数

运算方法:A矩阵中每一行中的数字乘以B矩阵中对应的的每一列的数字,把结果相加起来在这里插入图片描述由上述原理可将处理过程描绘为C语言代码:

#define N 9
float A[N][N],B[N][N],C[N][N];//定义N*N的矩阵A,B,Cfor(int i=0;i<N;i++)for(int j=0;j<N;j++){A[i][j]=(float)rand()/10000;//随机数初始化A、B矩阵B[i][j]=(float)rand()/10000;C[i][j]=0;//初始化C矩阵}

对A、B矩阵进行计算,结果放入C矩阵中:

for(int i=0;i<N;i++)for(int j=0;j<N;j++for(int k=0;k<N;k++)C[i][j] += A[i][k]*B[k][j]; 

这样的代码最后计算结果是正确的,但是数据量较大的时候,运算速度就会非常缓慢。

在存储访问结构中,行优先存储访问速度是优于列优先的,但B矩阵的访问是以列优先读取的,所以可以考虑将B矩阵存储改为行优先存储。

B[j][i] = (float)rand()/1000;

在这里插入图片描述

这样计算就是A的每一行与其B的对应行相乘并相加。
处理代码也要发生相应的改变

 for(int i=0;i<N;i++)for(int j=0;j<N;j++for(int k=0;k<N;k++)C[i][j] += A[i][k]*B[j][k]; //改变在这里

这里三个for循环,时间复杂度为O(n^3)

这里我们先用AVX对内部进行处理

	int k=0, temp = N%8;for(;k<N-temp;k+=8){	v0 = _mm256_loadu_ps(&a[i][k]);v1 = _mm256_loadu_ps(&b[j][k]);v2 = _mm256_mul_ps(v0,v1);//同时对8个浮点数进行计算c[i][j]+=(v2[0]+v2[1]+v2[2]+v2[3]+v2[4]+v2[5]+v2[6]+v2[7]);//规约}for(;k<N;k++)c[i][j]+=a[i][k]*b[j][k];//对剩余的部分数据进行处理

处理前(N为5000):
在这里插入图片描述

处理后:
在这里插入图片描述

速度得到了很大提升,但是可以看到,我们数据结果出现了误差,这是由于数据量比较大,我们只用的是float类型,造成了精度问题(可以用double类型或者用其他高精度方法解决)。

此时速度还是不够理想,现在就使用OpenMP进行优化了,
三重for循环之间并不存在依赖,可以直接用#pragma omp parallel for进行并行操作

#pragma omp parallel for num_threads(16)for(int i=0;i<N;i++){__m256 v0,v1,v2;for(int j=0;j<N;j++){int k=0,temp = N%8;for(;k<N-temp;k+=8){	v0 = _mm256_loadu_ps(&a[i][k]);v1 = _mm256_loadu_ps(&b[j][k]);v2 = _mm256_mul_ps(v0,v1);c[i][j]+=(v2[0]+v2[1]+v2[2]+v2[3]+v2[4]+v2[5]+v2[6]+v2[7]);}for(;k<N;k++){c[i][j]+=a[i][k]*b[j][k];}

处理结果:
在这里插入图片描述

最后开了-O3,最终优化结果:
在这里插入图片描述

附赠MPI+OpenMP+AVX,效果不是很好

#include <immintrin.h>
#include <stdio.h>
#include <time.h>
#include <mpi.h>
#include <algorithm>
#include <cstring>
#define N 5000
using namespace std;
float a[N][N],b[N][N],c[N][N],buffer1[N],buffer2[N];
int main()
{int rank,numprocs;MPI_Status status;MPI_Init(NULL,NULL);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_rank(MPI_COMM_WORLD,&rank);if(rank==0){for(int i=0;i<N;i++)for(int j=0;j<N;j++){a[i][j]=(float)rand()/1e6;b[j][i]=(float)rand()/1e6;c[i][j]=0;}double st = MPI_Wtime();    
//            for(int i=1;i<numprocs;i++)
//                MPI_Send(b,sizeof(b)/sizeof(float),MPI_FLOAT,i,0,MPI_COMM_WORLD);MPI_Bcast(b,sizeof(b)/sizeof(float),MPI_FLOAT,0,MPI_COMM_WORLD);int num_flag=0;while(num_flag<N){for(int i=0;i < min(N-num_flag,numprocs-1);i++){memcpy(buffer1,a[num_flag],sizeof(a[num_flag]));MPI_Send(buffer1,sizeof(buffer1)/sizeof(float),MPI_FLOAT,i+1,num_flag,MPI_COMM_WORLD);num_flag++;}}for(int i=0;i<N;i++){MPI_Recv(buffer2,sizeof(buffer2)/sizeof(float),MPI_FLOAT,MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,&status);int tag = status.MPI_TAG;memcpy(c[tag],buffer2,sizeof(buffer2));}double ed = MPI_Wtime();for(int i=1;i<numprocs;i++){MPI_Send(buffer1,sizeof(buffer1)/sizeof(float),MPI_FLOAT,i,N+1,MPI_COMM_WORLD);}printf("allright!耗时:%lfs\n",ed-st);printf("c[0][0] = %f\n",c[0][0]);}else{printf("%d is running\n",rank);
//            MPI_Recv(b,sizeof(b)/sizeof(float),MPI_FLOAT,0,0,MPI_COMM_WORLD,&status);MPI_Bcast(b,sizeof(b)/sizeof(float),MPI_FLOAT,0,MPI_COMM_WORLD);while(1){MPI_Recv(buffer1,sizeof(buffer1)/sizeof(float),MPI_FLOAT,0,MPI_ANY_TAG,MPI_COMM_WORLD,&status);if(status.MPI_TAG == N+1) break;#pragma omp parallel forfor(int i = 0; i < N;i++){		__m256 v0,v1,v2;int temp = N%8,j=0;for(;j < N-temp;j+=8){v0 = _mm256_loadu_ps(&buffer1[j]);v1 = _mm256_loadu_ps(&b[i][j]);v2 = _mm256_mul_ps(v0,v1);buffer2[i]+=(v2[0]+v2[1]+v2[2]+v2[3]+v2[4]+v2[5]+v2[6]+v2[7]);
//                                    buffer2[i] += buffer1[j] * b[i][j];}for(;j<N;j++){buffer2[i]+=buffer1[j]*b[i][j];}}MPI_Send(buffer2,sizeof(buffer2)/sizeof(float),MPI_FLOAT,0,status.MPI_TAG,MPI_COMM_WORLD);}}MPI_Finalize();return 0;
}

这篇关于利用AVX、OpenMP进行矩阵乘加速的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592985

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

业务中14个需要进行A/B测试的时刻[信息图]

在本指南中,我们将全面了解有关 A/B测试 的所有内容。 我们将介绍不同类型的A/B测试,如何有效地规划和启动测试,如何评估测试是否成功,您应该关注哪些指标,多年来我们发现的常见错误等等。 什么是A/B测试? A/B测试(有时称为“分割测试”)是一种实验类型,其中您创建两种或多种内容变体——如登录页面、电子邮件或广告——并将它们显示给不同的受众群体,以查看哪一种效果最好。 本质上,A/B测

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

遮罩,在指定元素上进行遮罩

废话不多说,直接上代码: ps:依赖 jquer.js 1.首先,定义一个 Overlay.js  代码如下: /*遮罩 Overlay js 对象*/function Overlay(options){//{targetId:'',viewHtml:'',viewWidth:'',viewHeight:''}try{this.state=false;//遮罩状态 true 激活,f

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

Python脚本:对文件进行批量重命名

字符替换:批量对文件名中指定字符进行替换添加前缀:批量向原文件名添加前缀添加后缀:批量向原文件名添加后缀 import osdef Rename_CharReplace():#对文件名中某字符进行替换(已完结)re_dir = os.getcwd()re_list = os.listdir(re_dir)original_char = input('请输入你要替换的字符:')replace_ch