矩阵分析与计算学习记录-线性空间和线性变换

2024-01-10 13:10

本文主要是介绍矩阵分析与计算学习记录-线性空间和线性变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章知识要点

线性空间:维数、基、坐标、基变换、坐标变换、线性相关线性无关,极大线性无关组、范德蒙德行列式;

线性空间的分解:子空间、值域(像空间)与核空间(零空间)、 秩与零度、子空间的交、和与直和;

线性变换及其矩阵表示:定义、运算、值域与核空间、秩 与零度、相似类、特征值与特征向量、不变子空间、同构。

首先这里介绍数域的概念

设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域

常见数域: 复数域C;实数域R;有理数域Q。

(注意:自然数集N及整数集Z都不是数域。)

说明:

1)若数集P中任意两个数作某一运算的结果仍在P中,则说数集P对这个运算是封闭的

2)数域的等价定义:如果一个包含0,1在内的数集P对于加法,减法,乘法与除法(除数不为0)是封闭的,则称数集P为一个数域。

1. 线性空间

1.1 线性空间的定义和性质

 

 后面四条也是数乘矩阵运算的四条性质

在线性代数课程中,我们把有序数组称为向量,把 n 维 向量的全体所构成的集合 Rn 称为 n 维向量空间。

一般地,如果 V 为非空的 n 维向量的集合,且集合 V 对 于向量加法及数乘两种运算封闭,那么就称集合V为向量空间

 除向量空间外的其他线性空间:

 举一些例子

 

 

 

 

 

 

   由此可以的得出线性空间的一般观点:

 1.2 线性相关和线性无关

 首先讨论向量的线性相关与线性无关

 这里线性组合和线性表示是一组相关的问题。

线性表示/线性组合:设V是数域F上的线性空间,α1,α2,…,αr是V中的任意一组向量(其中r≥1),k1,k2,…,kr是数域F中的一组数。若向量α可以表示成α=k1α1+k2α2+…+krαr,则称α可由α1,α2,…,αr线性表示或线性表出,同时也可以称α是α1,α2,…,αr的线性组合。

线性相关/线性无关:设α1,α2,…,αr是线性空间V中的一组向量(其中r≥1)。如果在数域F中有r个不全为零的数k1,k2,…,kr,使得k1α1+k2α2+…+krαr=0,则称α1,α2,…,αr线性相关。如果一组向量α1,α2,…,αr不线性相关,就称为线性无关。换言之,若k1α1+k2α2+…+krαr=0当且仅当k1=k2=…kr=0,便称α1,α2,…,αr线性无关。一组向量要么线性相关,要么线性无关,非此即彼。

线性表出唯一定理:设线性空间V中向量组α1,α2,…,αm线性无关,且向量组α1,α2,…,αm,β线性相关,则β可由α1,α2,…,αm线性表出,且表出是唯一的。

 

 举个简单的线性组合的例子:

 

线性相关和线性无关问题: 

 

 举个例子证明:

 

 

以上的行列式是范德蒙德行列式,以下给出其定义 

 

 同时可知范德蒙德行列式的结果是不为0的

 

向量组的极大线性无关组和秩

 

 极大线性无关组的基本性质

 

  1.3 基、维数与坐标

 

 

 

 下面是一题求基的例题

 下面是一题求坐标的例题

 

 

  1.4 基变换和坐标变换

 

 

 

 

 以下给出几组例题

 

这里插入以下逆矩阵的定义和性质 

 

 

 这里链接以下如何求逆矩阵的三种方法

 

 

 

 

 

 

 

 

  1.5 线性子空间

 

 

 

 

 

 

充分必要条件

 

 

 生成子空间的概念

 

 

 

 

 

 

 1.6 子空间的交与和

 

 

 

 

 

 

  1.7 子空间的直和

 

 

 

 2. 线性变换

 2.1 线性映射的定义和性质

 

 

  2.2 线性映射的矩阵表示

 

 

 

 

 

 

 

  2.3 线性映射的值域、核子空间

 

 

 

 秩与零度定理

 

  2.4 线性变换的定义和矩阵表示

 

 

    

 

对于上诉知识已经熟知的,可以去看另外一个博主整理完的全部概念,以下放上网址

 线性空间和线性变换

这篇关于矩阵分析与计算学习记录-线性空间和线性变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590915

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <