矩阵分析与计算学习记录-线性空间和线性变换

2024-01-10 13:10

本文主要是介绍矩阵分析与计算学习记录-线性空间和线性变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章知识要点

线性空间:维数、基、坐标、基变换、坐标变换、线性相关线性无关,极大线性无关组、范德蒙德行列式;

线性空间的分解:子空间、值域(像空间)与核空间(零空间)、 秩与零度、子空间的交、和与直和;

线性变换及其矩阵表示:定义、运算、值域与核空间、秩 与零度、相似类、特征值与特征向量、不变子空间、同构。

首先这里介绍数域的概念

设P是由一些复数组成的集合,其中包括0与1,如果P中任意两个数的和、差、积、商(除数不为0)仍是P中的数,则称P为一个数域

常见数域: 复数域C;实数域R;有理数域Q。

(注意:自然数集N及整数集Z都不是数域。)

说明:

1)若数集P中任意两个数作某一运算的结果仍在P中,则说数集P对这个运算是封闭的

2)数域的等价定义:如果一个包含0,1在内的数集P对于加法,减法,乘法与除法(除数不为0)是封闭的,则称数集P为一个数域。

1. 线性空间

1.1 线性空间的定义和性质

 

 后面四条也是数乘矩阵运算的四条性质

在线性代数课程中,我们把有序数组称为向量,把 n 维 向量的全体所构成的集合 Rn 称为 n 维向量空间。

一般地,如果 V 为非空的 n 维向量的集合,且集合 V 对 于向量加法及数乘两种运算封闭,那么就称集合V为向量空间

 除向量空间外的其他线性空间:

 举一些例子

 

 

 

 

 

 

   由此可以的得出线性空间的一般观点:

 1.2 线性相关和线性无关

 首先讨论向量的线性相关与线性无关

 这里线性组合和线性表示是一组相关的问题。

线性表示/线性组合:设V是数域F上的线性空间,α1,α2,…,αr是V中的任意一组向量(其中r≥1),k1,k2,…,kr是数域F中的一组数。若向量α可以表示成α=k1α1+k2α2+…+krαr,则称α可由α1,α2,…,αr线性表示或线性表出,同时也可以称α是α1,α2,…,αr的线性组合。

线性相关/线性无关:设α1,α2,…,αr是线性空间V中的一组向量(其中r≥1)。如果在数域F中有r个不全为零的数k1,k2,…,kr,使得k1α1+k2α2+…+krαr=0,则称α1,α2,…,αr线性相关。如果一组向量α1,α2,…,αr不线性相关,就称为线性无关。换言之,若k1α1+k2α2+…+krαr=0当且仅当k1=k2=…kr=0,便称α1,α2,…,αr线性无关。一组向量要么线性相关,要么线性无关,非此即彼。

线性表出唯一定理:设线性空间V中向量组α1,α2,…,αm线性无关,且向量组α1,α2,…,αm,β线性相关,则β可由α1,α2,…,αm线性表出,且表出是唯一的。

 

 举个简单的线性组合的例子:

 

线性相关和线性无关问题: 

 

 举个例子证明:

 

 

以上的行列式是范德蒙德行列式,以下给出其定义 

 

 同时可知范德蒙德行列式的结果是不为0的

 

向量组的极大线性无关组和秩

 

 极大线性无关组的基本性质

 

  1.3 基、维数与坐标

 

 

 

 下面是一题求基的例题

 下面是一题求坐标的例题

 

 

  1.4 基变换和坐标变换

 

 

 

 

 以下给出几组例题

 

这里插入以下逆矩阵的定义和性质 

 

 

 这里链接以下如何求逆矩阵的三种方法

 

 

 

 

 

 

 

 

  1.5 线性子空间

 

 

 

 

 

 

充分必要条件

 

 

 生成子空间的概念

 

 

 

 

 

 

 1.6 子空间的交与和

 

 

 

 

 

 

  1.7 子空间的直和

 

 

 

 2. 线性变换

 2.1 线性映射的定义和性质

 

 

  2.2 线性映射的矩阵表示

 

 

 

 

 

 

 

  2.3 线性映射的值域、核子空间

 

 

 

 秩与零度定理

 

  2.4 线性变换的定义和矩阵表示

 

 

    

 

对于上诉知识已经熟知的,可以去看另外一个博主整理完的全部概念,以下放上网址

 线性空间和线性变换

这篇关于矩阵分析与计算学习记录-线性空间和线性变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590915

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3